• Title/Summary/Keyword: Lead ion-selective electrode

Search Result 8, Processing Time 0.022 seconds

Polymeric Lead(II)-selective Electrode Based on N,N'-Bis-thiophen-2-ylmethylene-pyridine-2,6-diamine as an Ion Carrier

  • Kim, Hee-Cheol;Lee, Hyo-Kyoung;Choi, A-Young;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.538-542
    • /
    • 2007
  • Polymeric electrodes for lead ion based on N,N'-bis-thiophen-2-ylmethylene-pyridine-2,6-diamine as an ion carrier were prepared. The membrane electrode (m-3) containing o-NPOE as a plasticizer and 50 mol% additive of ionophore gives an excellent Nernstian response (29.59 mV/decade) and the limit of detection of ?log a (M) = 5.74 to Pb2+ in Pb(NO3)2 solution at room temperature. The prepared electrode provided good sensitivity and outstanding selectivity and response for Pb2+ over a wide variety of other metal ions in pH 7.0 buffer solutions. The good sensitivity and selectivity towards lead ion are attributed to the strong complexation of lead ion to N,N'-bis-thiophen-2-ylmethylene-pyridine-2,6-diamine which has geometrically the proper cavity to coordinate to the ligand.

Lead(II)-selective Polymeric Electrode Using a Schiff Base Complex of N,N'-Bis-thiophene-2-ylmethylene-ethane-1,2-diamine as an Ion Carrier

  • Jeong, Tae-Jun;Jeong, Dae-Cheol;Lee, Hyo-Kyoung;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1219-1224
    • /
    • 2005
  • We prepared lead ion-selective PVC membranes that were based on N,N'-bis-thiophene-2-ylmethylene-ethane-1,2-diamine as a membrane carrier. The membrane electrode has a linear dynamic range between 1.0 ${\times}$ $10^{-5}$ and 1.0 ${\times}$ $10^{-1}$ M with a Nernstian slope of 29.79 mV per decade, and its detection limit was 2.04 ${\times}$ $10^{-6}$ M at room temperature. The potentiometric response is independent of the pH of the solution in the pH range of 5-7. The proposed electrode revealed good selectivity and response for $Pb^{2+}$ over a wide variety of other metal ions in pH 5.0 buffer solutions, and there was good reproducibility of the base line on the subsequent measurements. The membrane electrode has a relatively fast response time, satisfactory reproducibility and a relatively long life time.

Lead-Selective Poly(vinyl chloride) Membrane Electrode Based on 1-Phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone

  • Zare, Hamid Reza;Ardakani, Mahammad Mazloum;Nasirizadeh, Navid;Safari, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • A PVC membrane electrode for lead ion based on 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone (PQDBP) as ionophore was demonstrated. The optimum composition of the membrane was 30 wt% poly(vinyl chloride), 60 wt% dibutyl phthalate as a plasticizer, 4 wt% ionophore and 6 wt% sodium tetraphenylborate as additive. The electrode exhibits a Nernstian response (28.7 mV decade$^{-1}$) for Pb$^{2+}$ over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-6}$ M) with a detection limit of 6.0 ${\times}$ 10$^{-7}$ M. This sensor has a short response time and can be used for at least 2 months without any divergence in potentials. The proposed electrode could be used in a pH range of 3.0-6.0 and revealed good selectivities for Pb$^{+2}$ over a wide variety of other metal ions. It was successfully applied as an indicator electrode for the potentiometric titration of lead ion with potassium chromate and for the direct determination of lead in mine.

Lead Ion Selective Solid Contact Electrode based on Tetramethylthiuram monosulfide ionophore (Tetramethylthiuram monosulfide를 ionophore로 이용한 납 이온 선택성 poly(aniline) 고체 접촉 전극)

  • Han, Won-Sik;Park, Woon-Suk;Kwon, Hye-Yeong;Lee, Young-Hoon;Hong, Tae-Kee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.356-361
    • /
    • 2013
  • Lead (II) ion selective poly(aniline) solid contact electrode based on Tetramethylthiuram monosulfide ionophore as a sulfur containing sensing material is successfully developed. The electrode exhibits good linear response of 25.6 mV / decade (at $20{\pm}0.2^{\circ}C$, r2=0.995) within the concentration range of $1.0{\times}10^{-1}{\sim}4.0{\times}10^{-7}$ M Pb (II). The composition of this electrode was Ionophore : PVC : dioctylphthalate : potassiumtetrakis(4-chlorophenyl)borate : Oleic acid = 5.0 : 20.0 : 25.0 : 4.0 : 5.0. When we consider the results of using different composition electrodes based on only one potassiumtetrakis(4-chlorophenyl)borate or Oleic acid liphophlic additive, poly(aniline) solid contact electrode based on Tetramethylthiuram monosulfide ionophore with potassiumtetrakis(4-chlorophenyl)borate and Oleic acid liphophlic additive had the best result in response characteristics. The electrode shows good selectivity for lead (II) ion in comparison with alkali, alkaline earth, transition and heavy metal ions. This electrode is suitable for use with aqueous solutions of pH 3.0 ~ 7.0 and their standard deviation in the measured emf differences was ${\pm}2.94$ mV at Tris buffered lead sample solution of $1.0{\times}10^{-2}$ M and ${\pm}2.82$ mV at Tris buffered lead sample solution of $1.0{\times}10^{-3}$ M. Their stabilization time was less than 710 s. and response time was less than 16 s.

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Construction of a Silver(I) Ion-Selective Electrode Using Amine Phenol Ligand as Carrier and the Selective Determination of Silver in Actual Samples (수송체로서 아민페놀을 이용한 은(I)이온-선택 전극의 제조와 실제 샘플에서 은의 선택적 측정)

  • Xu, Wen-Ju;Chai, Ya-Qin;Yuan, Ruo
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • This work discusses the fabrication, development and potential response behaviors of $Ag^+$ ion-selective electrodes ($Ag^+$-ISE) based on N,N'-bis(2-hydroxybenzyl)-1,3-diaminopropane (L1) and N,N'-bis(2-hydroxybenzyl)-2,2-dimethyl-1,3-diaminopropane (L2) as carriers. The observations indicated that the resulting electrode based on L1 toward $Ag^+$ showed stable near-Nernst slope approaching 58.7 mV/dec and the optimum potential response characteristics in a linear range at least five orders of magnitude with a detection limit of $1.0{\times}10^{-6}M$. The proposed electrode displayed the preferential selectivity to $Ag^+$ against other tested cations. The excellent potential analytical characteristics could lead to the successful applications of silver assay in significant real samples, indicating that the proposed $Ag^+$-ISE showed a significant advancement of measurement capabilities. But for the electrode based on L2, the poor potential response characteristics were observed in total experiment process.

Coated Wire Lead(Ⅱ) Ion-Selective Electrodes based on Crown Ethers (Crown Ether를 이용한 탐침형 납 이온선택성 전극)

  • Jang, Mi Kyeong;Ha, Kwang Soo;Seo, Moo Lyong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.7
    • /
    • pp.337-342
    • /
    • 1997
  • Acryloylmethylbenzo-15-crown-5 was prepared from the reaction of 4'-hydroxymethylbenzo-15-crown-5 with acryloyl chloride. And, poly(acryloylmethylbenzo-15-crown-5) [poly(AMB15C5)] was synthesized by radical polymerization using AIBN as initiator in benzene. Coated wire lead(II) ion-selective electrodes ($Pb^{2+}$-CWISEs) using either poly(AMB15C5) or B15C5 as neutral carrier were prepared, respectively. $Pb^{2+}$-CWISEs gave linear responses with slopes of 28$\pm$ 1mV per decade within the concentration range of $10^{-5} M{\sim}10^{-1}$ M, respectively. Also, the detection limits were $10^{-6}$ M and response times were either 3 or 5 min. for B15C5 and poly(AMB15C5), respectively. $Pb^{2+}$-CWISE base on B15C5 was rather unstable than poly(AMB15C5)'s due to solubility of the B15C5 in water. The selectivity coefficients of a variety of interfering ions such as $Mg^{2+},\; Ca^{2+},\; Co^{2+},\; Ni^{2+},\; Cu^{2+},\; Zn^{2+}$ and $Cd^{2+}$ were small ($10^{-4}{\sim}10^{-5}$), while those of $Na^+$ and $K^+$ were large (0.1∼0.01). In addition, the electrode responses depended upon the pH of test solution and the composition of the membrane. In the range pH 3∼6 of test solution, potentials of Pb2+-CWISEs were hardly changed. The optimal contents of B15C5 and poly(AMB15C5) were 7.7 wt% and 13.1 wt%, respectively.

  • PDF

Lead Ion-Selective Electrode Based on Upper-rim Calix[4]crown Ionophore (캘릭스[4]크라운 유도체를 이온선택성 물질로 사용한 납이온 선택성 막전극)

  • Namgung, Miok;Ihm, Hye-Jae;Paek, Kyung-Soo;Yun, Young-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.115-119
    • /
    • 2000
  • A PVC membrane electrode based on upper-rim calix[4] crown as ionophore was prepared using dioctyl sebacate (DOS) as a plasticizer. The potential response of this membrane electrode to alkali, alka-line earth and transitionmetal metal cations were examined. This membrane electrode exhibited a Nernstian response to $10^{-6}{\sim}10^{-2}M\;Pb(NO_3)_2$ with a slope ot 27.0 mV/decade. Its response time ($t_{90}$) was 10s and it could be used for at least 2 months. Also, the potential was maintained constantly in the rage of ph $2.0{\sim}12$.

  • PDF