• Title/Summary/Keyword: Lead ion removal

Search Result 34, Processing Time 0.031 seconds

Preparation of ion exchanger from waste paper cup and removal characteristics of heavy metal (폐종이컵을 이용한 이온교환체 제조와 중금속제거특성)

  • 유수용;이훈용;정원진;문명준;이민규
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.993-999
    • /
    • 2002
  • Waste paper cup was sulfonated to be used as ion exchanger. Removal characteristic of copper and lead ion by prepared ion exchanger was investigated. The sulfonation was conformed by the high intensity band of $SO_3H$ group around 1100~$1160cm^{-1}$. The synthesized ion exchanger had greater removal ability for copper and lead ion than the original waste paper cup. Ion exchange system reached the final equilibrium plateau within 30min. The maximum removal capacities $q_{max}$ were calculated as 9.79mg/g fur copper and 15.95mg/g for lead, respectively. The affinity of lead based on a weight was higher than that of copper. The ion exchange phenomena appeared to follow a typical Freundlich isotherm.

The removal of lead ion by crab shell from aqueous solution (게껍질에 의한 수중의 납 이온 제거)

  • 김동석
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.361-366
    • /
    • 2002
  • Several effects on Pb$^{2+}$ removal by crab shell from aqueous solution were investigated. As the increase of initial Pb$^{2+}$ concentration and decrease of initial crab shell concentration, the time required to reach an equilibrium state and the residual Pb$^{2+}$ concentration increased. In our experimental ranges, the optimum initial Pb$^{2+}$ concentration and crab shell concentration were below 103 mg/$\ell$ and over 0.5 mg/$\ell$, respectively. Also, in order to investigate the mechanism of Pb$^{2+}$ removal by crab shell in aqueous solution, the crab shell was compared with chitosan and chitin on aspects of Pb$^{2+}$ removal capacity and Pb$^{2+}$ removal rate. The Pb$^{2+}$ removal by crab shell was greater than that by chitin and chitosan. The role of chitin was not so great in Pb$^{2+}$ removal by crab shell. The Pb$^{2+}$ removal by chitosan was not exactly correlated to the molecular weight of chitosan. weight of chitosan.

THE REMOVAL OF HEAVY METALS USING HYDROXYAPATITE

  • Lee, Chan-Ki;Kim, Hae-Suk;Kwon, Jae-Hyuk
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.205-212
    • /
    • 2005
  • The study was conducted to investigate the removal of heavy metals by using Hydroxyapatite(HAp) made from waste oyster shells and wastewater with high concentration of phosphorus. The maximum calcium concentration for the production of HAp in this study was released up to 361 mg/L at pH of 3 by elution experiments. When the pH was at adjusted 6, the maximum calcium released concentration was 41 mg/L. During the elution experiment, most of the calcium was released within 60 minutes. This reaction occurred at both pH levels of 3 and 6. The result of the XRD analysis for the HAp product used in this study shows the main constituent was HAp, as well as OCP. The pH was 8.6. As the temperature increased, the main constituent did not vary, however its structure was crystallized. When the pH was maintained at 3, the removal efficiency decreased as the heavy metal concentration increased. The order of removal efficiency was as follows: $Fe^{2+}$(92%), $Pb^{2+}$(92%) > $Cu^{2+}$(20%) > $Cd^{2+}$(0%). Most of these products were dissolved and did not produce sludge in the course of heavy metals removal. As the heavy metal concentration increased at pH of 6, the removal efficiency increased. The removal efficiencies in all heavy metals were over 80%. From the analysis of the sludge after reaction with heavy metals, the HAp was detected and the OCP peak was not observed. Moreover, lead ion was observed at the peaks of lead-Apatite and lead oxidant. In the case of cadmium, copper and iron ions, hydroxide forms of each ion were also detected.

Adsorption characteristics of lead ion in aqueous solution by volcanic ash (화산재에 의한 수용액의 납 이온 흡착특성)

  • Kim, Mi-Yeon;So, Myeong-Gi;Kim, Yeong-Gwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2011
  • The feasibility of using volcanic ash for lead ion removal from wastewater was evaluated. The adsorption experiments were carried out in batch tests using volcanic ash that was treated with either NaOH or HCl prior to the use. Volcanic ash dose, temperature and initial Pb(II) concentration were chosen as 3 operational variables for a $2^3$ factorial design. Ash dose and concentration were found to be significant factors affecting Pb(II) adsorption. The removal of Pb(II) was enhanced with increasing volcanic ash dose and with decreasing the initial Pb(II) concentration. Pb(II) adsorption on the volcanic ash surface was spontaneous reaction and favored at high temperatures. Calculation of Gibb's free energy indicated that the adsorption was endothermic reaction. The equilibrium parameters were determined by fitting the Langmuir and Freundlich isotherms, and Langmuir model better fitted to the data than Freundlich model. BTV(base-treated volcanic ash) showed the maximum adsorption capacity($Q_{max}$) of 47.39mg/g. A pseudo second-order kinetic model was fitted to the data and the calculated $q_e$ values from the kinetic model were found close to the values obtained from the equilibrium experiments. The results of this study provided useful information about the adsorption characteristics of volcanic ash for Pb(II) removal from aqueous solution.

Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem

  • Harish, Narayana;Janardhan, Prashanth;Sangami, Sanjeev
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.225-237
    • /
    • 2018
  • The sorption of metal ions with low-cost adsorbents plays an important role in sustainable development. In the present study, the efficacy of sugarcane bagasse, rain tree fruits (samaneasaman), banana stem and their mixtures, used as bio-sorbents, in the removal of Cu(II) and Pb(II) ions from aqueous solution is evaluated. Batch studies are conducted, and residual ions were measured using Inductively Coupled Plasma (ICP)-atomic spectrometer. Effect of pH, initial metal ion concentration, reaction time and adsorbent dosage are studied. The Pb(II) removal efficiency was observed to be 97.88%, 98.60% and 91.74% for rain tree fruits, banana stem and a mixture of adsorbents respectively. The highest Cu(II) ion removal was observed for sugarcane bagasse sorbent with an efficiency of 82.10% with a pH of 4.5 and a reaction time of 90 min. Finally, desorption studies were carried out to study the leaching potential of adsorbent, and it was found that the adsorbent is stable in water than the other leaching agents such as HCl, ammonium acetate, Sodium EDTA. Hence, these adsorbents can be effectively used for the removal of these heavy metals.

Electrolytic Treatment of Heavy Metallic ion Wastewater by BPBE Cell (BPBE Cell에 의한 중금속함유폐수처리)

  • 장철현;박재주;박승조;김수생
    • Environmental Analysis Health and Toxicology
    • /
    • v.4 no.3_4
    • /
    • pp.29-59
    • /
    • 1989
  • For the purpose of electrolytic treatment of wastewater containing various heavy metals, the BPBE Cell of batch and continuous type was considered and experimented. Some results from this study were summarized as follows: 1. When the artificial wastewater containing 500 mg/l of the concentration of various heavy metallic ion was electrolyzed in BPBE Cell of batch type, the removal efficicency was over 95% in cadmiun (II), lead (II), chromium (Ⅵ) and over 85% in copper (II), chromium (III). 2, As granular activated carbon packed in BPBE Cell, coconut shell was superior to lignite and the removal efficiency was the highest when the activated carbon was 4/6 mesh, the voltage was 20V. 3. When the heavy metallic ion in wastewater was electrolyzed in BPBE Cell of continuous type, about 1,000mg of heavy metal per 1kg of coconut sell could be removed. 4. The treatment method of heavy metallic ion in wastewater by BPBE Cell cost less than in the former chemical treatment method and the coconut shell packed in BPBE Cell could be regenerated by chemical method.

  • PDF

Electrokinetic 기법을 이용한 토양 중 납의 안정화

  • 조용실;김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.351-354
    • /
    • 2002
  • In this study, variation of electrochemical parameters and characteristics of lead immobilization due to phosphoric acid injection in soil were studied during electrokinetic remediation of lead contaminated soil. TCLP result showed about 100% of soil was satisfied TCLP regulation criteria. And injected ion from cathode reservoir by ionmigration was proportionate to concentration of phosphoric acid and elapsed time. Therefore, when removal is infeasible or not cost-effective, in situ immobilization method would be more effective.

  • PDF

Heavy Metal Removal using Sawdust (톱밥을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Kim, Jung Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • A study on the removal of heavy metals using sawdust was performed. Among heavy metals such as lead, copper and cadmium ions, uptake capacity of lead ions was the highest as about 0.22 mmol/g-dry mass at pH 4. The surface condition and existence of lead ions onto the sawdust was confirmed by the FT-IR, SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray) instrumental analyses. When 0.5g of sawdust was added to initial lead solution (100ppm) removal efficiency was approximately 90%. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and experimental data well fitted to model equation. Most adsorption for lead ions was also completed within 60min and pH of lead solution from 5.8 to 4.5 decreased with time.

  • PDF

Evaluation of Biological and Physico-chemical Detoxification Methods for the Removal of Inhibitors in Lignocellulose Hydrolysate (목질계 바이오매스 가수분해물 중 발효저해 물질에 대한 생물학적 및 물리화학적 무독화 방법의 평가)

  • Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.415-419
    • /
    • 2009
  • In this study, the detoxification methods were evaluated for the removal of fermentation inhibitors from synthetic solution containing the composition similar to the lignocellulosic hydrolysate. The enzyme peroxidase and laccase were used as a biological treatment method. The physico-chemical methods such as adsorption and ion exchange were applied by using activated charcoal and ion exchange resins. The enzyme peroxidase showed a excellent removal of phenolic compounds. The 5-HMF and furfural were completely removed by activated charcoal. The anion exchange resin showed a good result for detoxification of acetic acid. The activated charcoal and ion exchange resins lead to a loss of sugars more or less. The choice of detoxification method must be made after considering the composition and inhibitors in hydrolysates.

A Study on Heavy Metal Removal Using Alginic Acid (알긴산을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.107-114
    • /
    • 2007
  • A study on the removal of heavy metals using alginic acid, a kind of polysaccharides, was performed. Alginic acid adsorbed 480 mg Pb/g dry mass at pH 4, which was about twice as high as uptake capacity of other biosorbents. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and the experimental data well fitted to model equation. The adsorption of lead ions was an endothermic process since binding strength increased with temperature. The effect of alkali metal ions ($Ca^{2+}$ and $Mg^{2+}$) on lead sorption capacity was negligible and most adsorption process was completed in 30min. The uptake capacity of other metals such as, copper, mercury, strontium, and cesium ions using alginic acid was also investigated.

  • PDF