• Title/Summary/Keyword: Lead in air

Search Result 621, Processing Time 0.026 seconds

The Development of Risk Predictive Model for Air-borne Lead in Blood (대기 중 납의 RISK예측모형 개발)

  • 김종석
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.46-51
    • /
    • 1993
  • In order to survery the risk of air-borne lead to human, the relation between air-borne lead level and blood lead level was examined by using of the kinetic model and statistical model. The results of this survey were as follows: 1. The pathways of lead intake were food and water, mainly. 2. Though blood lead level of Korean urbanire was higher than that of American or Japanese, it was not so severe as to influence human health. 3. The lead content in food and water was high, and so it is needed to confirm the cause of high content was whether second contamination by air pollution or not.

  • PDF

An investigation of lead absorption in an electric accumulator factory with the use of personal samplers

  • Williams M.K.;King E.;Walford Joan
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.561-575
    • /
    • 1994
  • Williams, M K., King, E., and Walford, Joan (1969). Brit. J. industr. Med., 26, 202-216. An investigation of lead absorption in an electric accumulator factory with the use of personal samplers. Thirty-nine lead workers and controls, in stable conditions of exposure, each wore personal lead-in-air samplers daily for two weeks. During the second week samples for blood lead, urinary lead, urinary coproporphyrin, urinary $\gamma$-aminolevulinic acid (ALA), the punctate basophil count, and haemoglobin were taken daily. Duplicate estimations were made on one day. The lead exposures of men doing almost identical jobs differed by ratios of up to four to one. This could be attributed on y to personal differences in working habits. The correlation coefficients and regression equations of the biochemical tests with lead-in-air and with each other were determined. The mean values and $95\%$ confidence limits of single determinations of some of the biochemical tests corresponding to the two commonly accepted TLVs of lead-in-air (0-20 and 0-15 mg./$m^{3}$) were calculated from the regression equations. For each biochemical test the variation due to analytical error, the variation from day to day within subjects and the residual variation about the regression on lead-in-air were calculated. Previous estimates of the latter are not known. Excessive confidence may be placed in an index of exposure due to its low coefficient of variation within subjects unless the coefficient of variation between subjects about regression is taken into account. The correction for specific gravity of estimations of lead and ALA in spot samples of urine was found to reduce slightly the residual variation between subjects about the regression on lead-in-air and to increase the correlations with lead-in-air and with the other biochemical tests, but these changes were not statistically significant. The modified method used for estimating blood lead and urinary lead is described and validated.

  • PDF

Relationship between the Biological Lead Exposure Indices and Air lead Concentrations measured by Personal Air Samplers (개인용 공기포집기를 이용한 기중 연농도와 생물학적 연 폭로지표와의 관련성)

  • Lee, Haeng-Ryeol;Kim, Jung-Man;Jung, Kap-Yull;Kim, Joon-Youn
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.1 s.41
    • /
    • pp.65-73
    • /
    • 1993
  • This study was carried out to evaluate the relationship between the biological lead exposure indices and air lead concentrations measured by personal air samplers. The 72 occupationally lead exposed workers were observed and the bioiogical lead Exposure indices chosen for this study were blood lead(PbB), urine lead(PbU), zinc protoporphyrin in whole blood(ZPP), $\delta$-aminolevulinic acid in urine(ALAU), $\delta$-aminolevulinic acid dehydratase activity (ALAD), coproporphyrin in urine(CPU) and hemoglobin(Hb). The workers were divided into four groups by air lead concentrations: Group I; under $0.05mg/m^3$, Group II; $0.05-0.10mg/m^3$, Group III; $0.10-0.15mg/m^3$ and Group IV; and over $0.15mg/m^3$. For evaluation the relationship between the biological lead exposure indices and air lead concentrations was used as correlation coefficients. The results obtained were as follows: 1. In Group I, II, III and IV, the mean value of PbB were $25.45{\pm}1.84{\mu}g/dl,\;27.87{\pm}3.53{\mu}g/dl,\;31.21{\pm}1.76{\mu}g/dl\;and\;47.02{\pm}13.96{\mu}g/dl$. Between Group IV and other groups showed statistically significant difference(p<0.05). 2. There was an increasing tendency of PbB, PbU, ALAU and ZPP according to the increase the mean air lead concentration, while ALAD has decreasing tendency. CPU and Hb did not show any constant tendency. 3. Correlation coefficients between PbB, PbU, ZPP, ALAU, ALAD, CPU, Hb and air lead concentration were 0.95, 0.83, 0.89, 0.72, -0.83, 0.51 and -0.45 respectively, and regression coefficient between PbB(Y) and PbA(X) was Y=126.8746X+16.9996(p<0.01).

  • PDF

Lead Exposure Indices, Workloads, and Environmental Factors in Battery Manufacturing Workplace

  • Cho, Kwang Sung;Jeong, Byung Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.259-266
    • /
    • 2013
  • Objective: This study aims to evaluate the workloads of industrial and automobile storage battery industries and their association to biological exposure indices. Background: Occupational lead exposure at battery manufacturing workplace is the most serious problem in safety and health management. Method: We surveyed 145 workers in 3 storage battery industries. Environmental factors(lead in air, temperature, humidity and vibration)), biological exposure indices(lead in blood and zinc protoporphyrin in blood) and individual workload factors(process type, work time, task type, weight handling and restrictive clothing) were measured in each unit workplace. Results/Conclusion: Air lead concentration is statistically significant in associations with workload factors(process type, work time, task type, and restrictive clothing) and environmental factors (humidity and vibration), whereas zinc protoporphyrin in blood are significantly associated with work time and weight handling. And lead in blood is significantly associated with work time, weight handling and temperature. Application: The results of this study are expected to be a fundamental data to job design.

A Study on the Correlation between Lead in Airborne Suspended Particulates and Leaves of Roadside Trees in Urban Area (대기부유분진중 Pb와 가로수잎중 Pb와의 상관성에 관한 연구)

  • 고현규;김희강;현용범
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.3
    • /
    • pp.11-18
    • /
    • 1986
  • In order to evaluate the state of the environmental pollution by vehicle exhaust in Seoul area the correlation between lead in air and leaves of roadside trees has been investigated during August in 1985. The dust in the atmosphere was collected by high volume air sampler to measure the concentration of lead. On the other hand, lead as a pollution indicator was extracted from the leaves of roadside trees (Ginkgo biloba, Salix pseudo/lasiogyne, platanus occidentalis) by conventional method and their concentrations were determined. The following results were obtained : 1. Lead concentrations in the leaves of roadside trees varied with trees, for example, the average concentrations of lead in each of the leaves of Ginkgo biloba, Salix pseudo/lasiogyne and Platanus occidentalis were 20.66 ppm, 9.37 ppm, and 10.58 ppm, respectively. 2. The dust sampled along heavily traveled highways showed that lead content tended to increase with traffic volume. 3. The correlation coefficients between lead correlation in air and leaves of Gingo biloba, Salix pseudo/lasiogyne, and Platanus orientalis were 0.80, 0.85, and 0.87, respectively.

  • PDF

The change of air lead concentrations in litharge making and smelting industries (일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화)

  • Choi, Jae-Wook;Kim, Nam-Soo;Cho, Kwang-Sung;Ham, Jung-O;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

A study on the change of air lead concentrations in lead-acid battery plants (축전지 사업장에서 공기 중 납 농도의 변화에 관한 연구)

  • Choi, Seung-Hyun;Kim, Nam-Soo;Kim, Jin-Ho;Cho, Kwang-Sung;Ham, Jung-O;Ahn, Kyu-Dong;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • To provide necessary information for future environmental monitoring of storage batteries in Korea, authors analyzed environmental monitoring dataset of air lead concentration of 12 storage battery industries measured during 1989-2006. We calculated geometric mean and standard deviation with minimum and maximum value of each year dataset. Air lead concentration data were analyzed according to year of measurement, type of grid manufacturing method (grid casting type or expander type), size of industries and type of operation (casting, lead powder & pasting, assembly and others). The geometric mean and standard deviation of all lead industries for overall 18 years were $72{\mu}g/m^3$ and 3.65 with minimum of $6{\mu}g/m^3$ and maximum of $7,956{\mu}g/m^3$. The geometric mean air lead concentrations of years between 1989-1999 were above the Korean PEL($50{\mu}g/m^3$), whereas those of years after year 2000 were below the Korean PEL showing 50% of it. The geometric mean concentration of air lead was significantly lower in expander method battery industries than that of grid method battery industries and was lower in large sized battery industries than small & medium sized ones throughout the whole 18 years period. The distributions of over PEL($50{\mu}g/m^3$) were decreased by the years of environmental monitoring and those were lower in expander method battery industries than grid method battery industries. The significant reduction of mean air lead concentration during last 10 years may be induced partly due to more active environmental engineering control and new introduction of new operation in grid method battery industries, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist which is not concrete evidence, but just circumstantial evidence.

Relationship of between blood lead level and lead related symptoms in low level lead exposure (저농도 연폭로에서 혈중 연농도와 자각증상과의 관계)

  • Hwang, Kyu-Yoon;Ahn, Jae-Eog;Ahn, Kyu-Dong;Lee, Byung-Kook;Kim, Joung-Soon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.24 no.2 s.34
    • /
    • pp.181-194
    • /
    • 1991
  • This study intended to obtain an useful information on the prevalence of subjective symptoms, and to clarify the interrelationships between blood lead and lead related symptoms in low level lead exposure. The 93 male workers exposed to lead and 56 male nonexposed workers were examined for their blood lead(PBB), Zinc-protoporphy(ZPP), hemoglobin(HB) and personnal history, and completed 15 questionnaires related to symptoms of lead absorption : also measured lead concentration in air (PBA) in the workplace. The results obtained were as follows ; 1. The means of blood lead (PBB), blood ZPP and hemoglobin (HB) among workers exposed to lead were $26.1{\pm}8.8{\mu}g/dl,\;28.3{\pm}26.0{\mu}g/dl$ and $16.2{\pm}1.2g/dl$ : whereas those of nonexposed workers were $18.7{\pm}5.1{\mu}g/dl,\;20.6{\pm}8.7{\mu}g/dl$ and $17.3{\pm}1.1g/dl$. The means of above three indicies between two groups showed significant difference statistically (p<0.05). 2. The means of blood lead (PBB), blood ZPP and hemoglobin of workers exposed .to different lead concentration in air were as follows : When it was below $25{\mu}g/m^3$, the indices were $24.7{\pm}79,\;26.1{\pm}26.8{\mu}g/dl\;and\;16.4{\pm}1.1g/dl$ respectively : These indices were $27.1{\pm}8.5,\;23.9{\pm}10.92{\mu}g/dl\;and\;16.2{\pm}1.3g/dl$ when the lead concentration in air was $25{\sim}50{\mu}g/m^3$ : and they were $3.4{\pm}9.3,\;42.3{\pm}31.3{\mu}g/dl\;and\;15.5{\pm}1.2g/dl$ when the concentration of lead was above $50{\mu}g/m^3$. Although there were statistical difference in blood lead and hemoglobin among three different lead concentration in air, there was no statistical difference of blood ZPP among the three groups with different exposure levels (p>0.05). 3. The most frequent by complained symptom was 'Generalized weakness and fatigue', and fewest symptom was 'Intermittent pains in abdomen' 4. Only two symptoms out of fifteen symptoms checked by themselves revealed significant difference between exposed and nonexposed groups. These were 'Intermittent pains of abdomen' and 'Joint pain or arthralgia' (p<0.05), No positive correlation was found between the levels of blood lead and symptom groups categorized as gastrointestinal, neuromuscular and constitutional symptoms, 5. Blood lead (r=0.3995) and ZPP (r=0.2837) showed statistically significant correlation with mean lead concentration in air, whereas correlations were not demonstrated between blood lead and lead related symptoms or blood ZPP and lead related symptoms. 6. Blood lead (PBB) and ZPP showed association (r=0.2466) and the equation PBB=23.75+0.0842 ZPP was derived. 7. On stepwise multiple regression, using blood lead level as a dependent variable and ZPP, hemoglobin (HB), age, work duration (WD) and symptom prevalence as a independent variables, only ZPP significantly contributed a lot to blood lead level. 8. While the ZPP measurement was found to be a good indicator in evaluating health effect of lead absorption in low level lead exposure, lead related symptoms were not sensitive enough to evaluate of lead absorption in low level exposure.

  • PDF

Determination of Atmospheric Lead in Suwon City (수원지역의 대기 중 Pb의 농도 결정)

  • Lee, Tae-Jung;Kim, Seoun-Cheon;Kim, Dong-Sool
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.535-542
    • /
    • 1995
  • Monitoring of lead concentration in the ambient alt was performed in Kyung Hee University-Suwon Campus over a period of 5 year from November 1989 to September 1994 using a cascade impactor having 9 size stages. Lead level was analyzed by x-ray fluorescence. The lead levels have been extensively examined to identify annual trends, seasonal variations, and size distribution of lead concentration. Even though consumption of leaded gasoline has been decreased, the levels have not significantly changed during the sampling period. Probably other sources like fossil fuel emission and refuse incinerator will be potential contributors. The seasonal variation showed that Pb concentration significantly increased in the winter season and decreased in the summer season. The size distributions of Pb were observed to be unimodal distribution of the 1.1~2.1 $mu extrm{m}$ sixte ranges in the winter and 0.65~1.1 ${\mu}{\textrm}{m}$ in the summer.

  • PDF

Determination of Atmospheric Lead in Suwon City (수원지역의 대기 중 Pb의 농도 결정)

  • Lee, Tae-Jung;Kim, Seoun-Cheon;Kim, Dong-Sool
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.149-149
    • /
    • 1995
  • Monitoring of lead concentration in the ambient alt was performed in Kyung Hee University-Suwon Campus over a period of 5 year from November 1989 to September 1994 using a cascade impactor having 9 size stages. Lead level was analyzed by x-ray fluorescence. The lead levels have been extensively examined to identify annual trends, seasonal variations, and size distribution of lead concentration. Even though consumption of leaded gasoline has been decreased, the levels have not significantly changed during the sampling period. Probably other sources like fossil fuel emission and refuse incinerator will be potential contributors. The seasonal variation showed that Pb concentration significantly increased in the winter season and decreased in the summer season. The size distributions of Pb were observed to be unimodal distribution of the 1.1∼2.1 $mu extrm{m}$ sixte ranges in the winter and 0.65∼1.1 ㎛ in the summer.