• Title/Summary/Keyword: Lead glaze

Search Result 13, Processing Time 0.023 seconds

Study on the Damage Mechanism by Salt of White Porcelain Figurine in Underglaze Iron (백자 철화 인물형 명기의 염 손상 메커니즘 연구)

  • Lee, Sun Myung;Jin, Hong Ju;Yun, Ji Hyeon;Kwon, Oh Young
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.368-382
    • /
    • 2020
  • It was confirmed that a white porcelain figurine in underglaze iron was damaged after exhibition. This study analyzes the current state of salt damage on the artifact and identifies the factors contributing to its deterioration by examining the material characteristics of the artifact and exhibition environment. The analysis will thus assist in preparing a conservation scheme for artifacts. The crystallized carbonate on the surface of the white porcelain figurine is a water-soluble alkali salt with high hygroscopicity and high solubility in water. This solubility increases as the temperature increases. The figurine was low-fired at approximately 1000℃. A lead glaze was applied, and thin cracks were formed on the glazed surface, indicating poor surface properties. Our analysis suggested that the showcase used in the exhibition likely created a moist environment resulting from condensation, as it was exposed to high temperature and relative humidity, particularly in comparison to the exhibition room where the temperature was regulated using an air conditioner. In addition, the artifacts in the showcase were exposed to sudden changes in temperature and relative humidity as the air conditioner was repeatedly turned on and off. Therefore, it can be deduced that the soluble salt remaining on the white porcelain figurine moved toward the surface of the relatively weak glaze as a result of the temperature, and the crystallized salt exacerbated surface damage as the moisture evaporated in a dry environment.

A Study on the Cobalt Blue Spinel Stains (코발트 청색 채색료에 대한 연구)

  • 박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 1978
  • The cobalt blue spinel stains (main composition; CoO:$Al_2O_3$=1 : 1) in CoO-NiO-$Al_2O_$3 and $CoO-Al_2O_3-Cr_2O_3$ system were prepared by the calcination of each component oxides to be adequate for the factory. The color development, the change of the lattice constnat of the spinel and its application to colored glazes were studied. The results were summarized as follows. 1) In CoO-Al_2O_3$ spinel, the excess addition of each component hardly made any variation in lattice constantand alumina-rich spinel specimens caused the brilliant blue color fade. 2) An increase of $Ni^{2+}$ in $CoO-NiO-Al_2O_3$ system, made the lattice constnat of the $CoO-Al_2O_3$ spinel smaller, and an increase of $Cr^{3+}$ in $CoO-Al_2O_3-Cr_2O_3$, larger. 3) Glazed stains under lead glaze were colored nearly same dark blue color fade.

  • PDF

Synthesis and Characterization of (Cr, Fe)-doped Y2O3-Al2O3 Red Pigments ((Cr, Fe)-doped Y2O3-Al2O3계 붉은 안료의 합성과 특성)

  • Shin, Kyung-Hyun;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.350-356
    • /
    • 2009
  • Perovskite codoped with chromium and iron have been studied. Samples with $YAl_{0.96}(Cr_{0.04-x}Fe_x)O_3$(x=0.01, 0.02, 0.03, 0.04) were prepared by solid state reaction at $1450^{\circ}C$ for 6 h and were characterized by XRD, FT-IR, Raman spectroscopy, SEM and UV-vis spectrophotometer. The color of the synthesized pigments were from red to dark brown(in bulk). Up to 0.02 mole $Fe_2O_3$ for substituting $Cr_2O_3$ development of color in lime-glaze gives good red color but as increasing amount of $Fe_2O_3$ and decreasing $Cr_2O_3$ proportionally produce from brownish red to brown. Increasing $Fe_2O_3$ amount lead to weaken crystal field relatively due to have smaller ionic radius than $Cr_2O_3$ ionic one. The UV-vis peaks were shifted to lower wavelength.