• Title/Summary/Keyword: Layup Thickness

Search Result 21, Processing Time 0.025 seconds

Natural Frequency and Mode Characteristics of Composite Pole Structures for Different Layup Sequences (복합소재 기둥 구조의 적층배열 변화에 따른 고유진동 및 모드 특성)

  • Kim, Gyu-Dong;Rus, Guillermo;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • The dynamic analysis of poles made of advanced composite materials is carried out for different length-thickness ratios and layup sequences. The numerical results using ABAQUS obtained for plates and shells are in good agreement with those reported by other investigators. The new results for laminated composite pole structures in this study mainly show the effect of the interactions between the radius-length ratio and other various parameters. The effect of fiber angles of long composite poles also investigated. Key observation points are discussed and a brief design guideline is given.

Characterization of CFRP Laminates′Layups Using Through-Transmitting Ultrasound Waves

  • Im, Kwang-Hee;David K. Hsu;Cho, Young-Tae;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.292-301
    • /
    • 2002
  • Ultrasound waves interact strongly with the orientation and sequence of the plies in a layup when propagating in the thickness direction of composite laminates. Also the layup orientation greatly influences its properties in a composite laminate. If the layup orientation of a ply is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. This may add a substantial cost to the production since the test is both labor intensive and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. High probability is found, by comparisons between the model and tests, in characterizing cured layups of the laminates by using the proposed method.

Characteristics Evaluation of CFRP Composite Laminates Using a Through-Transmission Method of Ultrasonic Transducers (초음파 트랜스듀셔 투과법을 이용한 CFRP 복합적층판의 특성평가)

  • Im, Kwang-Hee;Na, Sung-Woo;Kang, Tae-Sick;Kim, Sun-Kyun;Kim, Ji-Hyun;Lee, Hyun;Park, Jae-Woung;Sim, Jae-Ki;Yang, In-Young;Hsu, David K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.401-406
    • /
    • 2001
  • When propagating the thickness direction of composite laminates ultrasound waves interacts strongly with the orientation and sequence of the plies in a layup. Also the layup orientation greatly influences its properties in a composite laminate. If one ply of the layup orientation is misaligned, it could result in the part being rejected and discarded. Now, most researchers cut a small coupon from the waste edge and use a microscope to optically verify the ply sequences on important parts. Those may add a substantial cost to the product since the test is both labor hard and performed after the part is cured. A nondestructive technique would be very beneficial, which could be used to test the part after curing and require less time than the optical test. Therefore we have developed, reduced, and implemented a novel ply-by-ply vector decomposition model for composite lam mates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. It is found that a high probability shows between the model and tests developed in characterizing cured layups of the laminates.

  • PDF

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

Nonlinear Vibration Analyses of Stiffened Composite Panels under Combined Thermal and Random Acoustic Loads (열-랜덤 음향 하중을 받는 보강된 복합재 패널의 비선형 진동 해석)

  • Choi, In-Jun;Lee, Hong-Beom;Park, Jae-Sang;Kim, In-Gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.533-541
    • /
    • 2020
  • This study using ABAQUS investigates the nonlinear vibration responses when thermal and random acoustic loads are applied simultaneously to the stiffened composite panels. The nonlinear vibration analyses are performed with changing the number of stiffeners, and layup condition of the skin panel. The panel and stiffeners both are modeled using shell elements. Thermal load (ΔT) is assumed to have the temperature gradient through the thickness direction of the stiffened composite panel. The random acoustic load is represented as stationary white-Gaussian random pressure with zero mean and uniform magnitude over the panels. The thermal postbuckling analysis is conducted using RIKS method, and the nonlinear dynamic analysis is performed using Hilber-HughesTaylor time integration method. When ΔT = 25.18 ℃ and SPL = 105 dB are applied to the stiffened composite panel, the effect of the number of stiffener is investigated, and the snap-through responses are observed for composite panels without stiffeners and with 1 and 3 stiffeners. For investigation of the effect of layup condition of the skin panel, when ΔT = 38.53 ℃ and SPL = 110 dB are applied to the stiffened composite panel, the snap-through responses are shown when the fiber angle of the skin panel is 0°, 30°, and 60°.

Analytical Asymptotic Solutions for Rectangular Laminated Composite Plates

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Jun-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.200-209
    • /
    • 2011
  • An analytical solution for rectangular laminated composite plates was obtained via a formal asymptotic method. From threedimensional static equilibrium equations, the microscopic one-dimensional and macroscopic two-dimensional equations were systematically derived by scaling of the thickness coordinate with respect to the characteristic length of the plate. The onedimensional through-the-thickness analysis was performed by applying a standard finite element method. The derived twodimensional plate equations, which take the form of recursive equations, were solved under sinusoidal loading with simplysupported boundary conditions. To demonstrate the validity and accuracy of the present method, various types of composite plates were studied, such as cross-ply, anti-symmetric angle-ply and sandwich plates. The results obtained were compared to those of the classical laminated plate theory, the first-order shear deformation theory and the three-dimensional elasticity. In the present analysis, the characteristic length of each composite was dependent upon the layup configurations, which affected the convergence rate of the method. The results shown herein are promising that it can serve as an efficient tool for the analysis and design of laminated composite plates.

On Evaluation of CFRP Composite Laimates Using Ultrasonic Transducers with Polarization Direetion (초음파 탐촉자의 분극성에 따른 CFRP 복합적층판 평가에 관한 연구)

  • Ra, Seung-Woo;Im, Kwang-Hee;Yang, In-Young
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • This paper shows error in the polarization direction on ultrasonic transducers how sensitive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasonic waves $0{\circ},\;45{\circ}$ and $90{\circ}$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to cach other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with a modeling solutions which was based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to thickness direction along in-plane fibers.

A Study on the Inspection of Orthotropy Composite Laminate plates Using Ultrasonics (직교이방성 복합적층판의 초음파 탐사에 관한 연구)

  • 나승우;임광희;양인영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.583-586
    • /
    • 2000
  • This work ethibits how susceptive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasoic waves $0^\circ$ , $45^\circ$ and $90^\circ$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to each other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with modeling solutions which were based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to the thickness direction along in-plane fibers.

  • PDF

Finite element dynamic analysis of laminated composite beams under moving loads

  • Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.729-745
    • /
    • 2012
  • This study presents dynamic analysis of laminated beams traversed by moving loads using a multilayered beam element based on the first-order shear deformation theory. The present element consists of N layers with different thickness and material property, and has (3N + 7) degrees of freedom corresponding three axial, four transversal, and 3N rotational displacements. Delamination and interfacial slip are not allowed. Comparisons with analytical and/or numerical results available in literature for some illustrative examples are made. Numerical results for natural frequencies, deflections and stresses of laminated beams are given to explain the effect of load speed, lamina layup, and boundary conditions.

Deflection Analysis of Laminated Composite Cylindrical Shell Structures Based on Micro-Mechanics (마이크로 역학기반 GFRP 원통형 적층 쉘 구조의 변위 해석)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study carried out finite element deflection analysis of cylindrical shell structures made of composite materials, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. New results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite shell structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.