• Title/Summary/Keyword: Layered metal sulfide

Search Result 5, Processing Time 0.018 seconds

A Study on Magnetization of Layered Metal Sulfide for the Removal of Cesium Ions from Aqueous Solution (수중 세슘 제거를 위한 층상 황화 금속 물질 자성화 연구)

  • Chul-Min Chon;Jiwon Park;Jungho Ryu;Jeong-Yun Jang;Dong-Wan Cho
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • In the fabrication of magnetic adsorbent by incorporating iron species on base materials with layered structure, there can be a potential loss of adsorption capacity from the penetration of dissolved iron species into the structure. This work newly synthesized a magnetic adsorbent by incorporating nano magnetite and glucose into layered metal sulfide via hydrothermal treatment, and tested the removal efficiencies of cesium ions (Cs+) by the adsorbents fabricated under different conditions (final temperature and glucose mass ratio). As a result, the optimal fabrication condition was found to be mass ratio of 1 (layered metal sulfide): 0.1 (nano magnetite): 0.4 (glucose) and final temperature of 160℃. As-prepared adsorbent possessed good adsorption ability of Cs+ (54.8 mg/g) without a significant loss of adsorption capacity from attaching glucose and nano magnetite onto the surface.

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.250-257
    • /
    • 2022
  • Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.

The application of DGTs for assessing the effectiveness of in situ management of Hg and heavy metal contaminated sediment

  • Bailon, Mark Xavier;Park, Minoh;Choi, Young-Gyun;Reible, Danny;Hong, Yongseok
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m × 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

Study of nitrate concentration in Najaf Abad aquifer using GIS

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.167-172
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

The Environmental Impacts of Seasonal Variation on Characteristics of Geochemical Parameters in Lake Shihwa, Korea (시화호의 계절변화에 따른 지화학적 환경요인 특성 연구)

  • Kim Tae-Ha;Park Yong-Chul;Lee Hyo-Jin;Kim Dong-Hwa;Park Jun-Kun;Kim Sung-Jun;Lee Mi-Yeon
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1089-1102
    • /
    • 2004
  • Seasonal variation of biogeochemical characteristics was determined in Lake Shihwa from October 2002 to August 2003. When the lake was artificially constructed for the freshwater reservoir in 1988, the development of the strong haline density stratification resulted in two-layered system in water column and hypoxic/anoxic environment prevailed in the bottom layer due to oxidation of accumulated organic matters in the lake. Recently, seawater flux to the lake through the sluice has been increased to improve water quality in the lake since 2000, but seasonal stratification and hypoxic bottom layer of the lake still developed in the summer due to the nature of artificially enclosed lake system. As the lake is still receiving tremendous amount of organic matters and other pollutants from neighboring streams during the rainy summer season, limited seawater flux sluicing into the lake may not be enough for the physical and biogeochemical mass balance especially in the summer. The excess of accumulated organic matters in the bottom layer apparently exhausted dissolved oxygen and affected biogeochemical distributions and processes of organic and inorganic compounds in the stratified two-layered environment in the summer. During the summer, ammonia and dissolved organic carbon remarkably increased in the bottom layer due to the hypoxic/anoxic condition in the bottom layer. Phosphate also increased as the result of benthic flux from the bottom sediment. Meanwhile, dissolved organic carbon showed the highest value at the upstream area and decreased along the salinity gradient in the lake. In addition to the sources from the upstream, autochthonous origin of particulate organic carbon from algal bloom in the lake might be more important for sustaining aggravated water quality and development of deteriorated bottom environment in the summer. The removal of trace metals could be attributed to scavenging by strong insoluble metal-sulfide compounds in the hypoxic/anoxic bottom layer in the summer.