• 제목/요약/키워드: Layered Oxide

검색결과 183건 처리시간 0.029초

Designing Piezoelectric Audio Systems Using Polymer Polyvinylidene Fluoride

  • Um, Keehong;Lee, Dong-Soo;Pinthong, Chairat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제6권1호
    • /
    • pp.13-15
    • /
    • 2014
  • We develop a method to fabricate a flexible thin film audio systems using polyvinylidene fluoride(PVDF). The system we designed showed the properties of increased flexibility, transparency, and sound pressure levels. As an input port of two terminals, transparent oxide thin film with a low resistivity is adopted. In order to provide dielectric insulation, a transparent insulating oxide thin film is coated to obtain double-layered structure. In the range of visible light, the output from the output of the system showed a increased and improved sound pressure level. The piezoelectric polymer film of PVDF is used to produce mechanical vibration due to the applied electrical voltage signal. An analog electric voltage signal is transformed into sound waves in the audio system.

DSSC광전극의 나노구조 제어 및 투명전극 소재 개발

  • 장현석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.28-28
    • /
    • 2010
  • Photoelectrochemical solar cells such as dye-sensitized cells (DSSCs), which exhibit high performance and are cost-effective, provide an alternative to conventional p-n junction photovoltaic devices. However, the efficiency of such cells plateaus at 11-12%, in contrast to their theoretical value of 33%. Improvements in efficiency can only occur through a fundamental understanding of the underlying physics, materials, and device designs of DSSCs. A photoelectrode consisting of semiconducting oxide nanoparticles and a transparent conducting oxide electrode (TCO) is a key component of DSSC and design of photoelectrode materials is one of promising strategies to improving energy conversion efficiency. We introduce monodisperesed $TiO_2$ nanoparticles prepared by forced hydrolysis method and their superiority as photoelectrode materials was characterized with aids of optical and electrochemical analysis. Multi-layered TCO materials are also introduced and their feasibility for use as photoelectrodes is discussed in terms of optical absorption and charge collecting properties.

  • PDF

Synthesis and Dispersion Stabilization of Indium Tin Oxide Nanopowders by Coprecipitation and Sol-Gel Method for Transparent and Conductive Films

  • Cho, Young-Sang;Hong, Jeong-Jin;Kim, Young Kuk;Chung, Kook Chae;Choi, Chul Jin
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.831-841
    • /
    • 2010
  • Indium tin oxide (ITO) nanopowders were synthesized by coprecipitation and the sol-gel method to prepare a stable dispersion of ITO nano-colloid for antistatic coating of a display panel. The colloidal dispersions were prepared by attrition process with a vibratory milling apparatus using a suitable dispersant in organic solvent. The ITO coating solution was spin-coated on a glass panel followed by the deposition of partially hydrolyzed alkyl silicate as an over-coat layer. The double-layered coating films were characterized by measuring the sheet resistance and reflectance spectrum for antistatic and antireflective properties.

Molecular interactions between pre-formed metal nanoparticles and graphene families

  • Low, Serena;Shon, Young-Seok
    • Advances in nano research
    • /
    • 제6권4호
    • /
    • pp.357-375
    • /
    • 2018
  • Two dimensional (2D) atomic layered nanomaterials exhibit some of the most striking phenomena in modern materials research and hold promise for a wide range of applications including energy and biomedical technologies. Graphene has received much attention for having extremely high surface area to mass ratio and excellent electric conductivity. Graphene has also been shown to maximize the activity of surface-assembled metal nanoparticle catalysts due to its unique characteristics of enhancing mass transport of reactants to catalysts. This paper specifically investigates the strategy of pre-formed nanoparticle self-assembly used for the formation of various metal nanoparticles supported on graphene families such as graphene, graphene oxide, and reduced graphene oxide and aims at understanding the interactions between ligand-capped metal nanoparticles and 2D nanomaterials. By varying the functional groups on the ligands between alkyl, aromatic, amine, and alcohol groups, different interactions such as van der Waals, ${\pi}-{\pi}$ stacking, dipole-dipole, and hydrogen bonding are formed as the 2D hybrids produced.

중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구 (Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC))

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

원자층 증착법과 스퍼터링을 이용한 고체산화물 연료전지용 YSZ 전해질에 관한 연구 (Comparison of Yittria Stabilized Zirconia Electrolytes(YSZ) for Thin Film Solid Oxide Fuel Cell by Atomic Layer Deposition and Sputtering)

  • 탄비르 와카스하산;하승범;지상훈;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • In this research, two thin film deposition techniques, Atomic Layer Deposition and Sputtering are carried out for the fabrication of Yittria Stabilized Zirconia electrolyte for thin film Solid Oxide Fuel Cell. Zirconium to Yittrium ratio for both cases is about 1/8. Scanning Electron Microscope(SEM) image shows that the growth rate per hour for Atomic Layer Deposition is faster than for sputtering. X-ray Photo-electron Spectroscopy(XPS) shows that the peaks of both Zirconia and Yittria shift towards higher bending energy for the case of Atomic Layer deposition and thus are more strongly attached to the substrate. Later, Nyquist plot was used to compare the conductivity of Yittria Stabilized Electrolyte for both cases. The conductivity at $300^{\circ}C$ for Atomic Layer Deposited Yittria Stabilized Zirconia is found to be $5{\times}10^{-4}S/cm$ while that for sputtered Yittria Stabilized Zirconia is $2{\times}10^{-5}S/cm$ at the same temperature. The reason for better performance for Atomic Layered YSZ is believed to be the Nano-structured layer fabrication that aids in along the plane conduction as compared to the columnarly structured Sputtered YSZ.

  • PDF

Cu/CuO/Polyimide 시스템의 접착 및 계면화학 반응 (Adhesion and Interface Chemical Reactions of Cu/CuO/Polyimide System)

  • 이경운;채홍철;최철민;김명한
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.61-67
    • /
    • 2007
  • The magnetron reactive sputtering was adopted to deposit CuO buffer layers on the polyimide surfaces for increasing the adhesion strength between Cu thin films and polyimide, varying $O_2$ gas flow rate from 1 to 5 sccm. The CuO oxide was formed through all the $O_2$ gas flow rates of 1 to 5 sccm, showing the highest value at the 3 sccm $O_2$ gas flow rate. The XPS analysis revealed that the $Cu_2O$ oxide was also formed with a significant ratio during the reactive sputtering. The adhesion strength is mainly dependent on the amount of CuO in the buffer layers, which can react with C-O-C or C-N bonds on the polyimide surfaces. The adhesion strength of the multi-layered Cu/buffer layer/polyimide specimen decreased linearly as the heating temperature increased to $300^{\circ}C$, even though there showd no significant change in the chemical state at the polyimide interface. This result is attributed to the decrease in surface roughness of deposited copper oxide on the polyimide, when it is heated.

Layered Nickel-Based Oxides on Partially Oxidized Metallic Copper Foils for Lithium Ion Batteries

  • Chung, Young-Hoon;Park, Sun-Ha;Kim, Hyun-Sik;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권4호
    • /
    • pp.204-210
    • /
    • 2011
  • Thin film electrodes have been intensively studied for active materials and current collectors to enhance the electrochemical performance. Here, porous structures of nickel-based oxide films, consisting of nickel oxide and copper (II) oxide, which was derived from the copper substrate during the annealing process, were deposited on metallic copper foils. The half-cell tests revealed excellent capacity retention after $80^{th}$ charge/discharge cycles. Some films showed an excess of the theoretical capacity of nickel oxides, which mainly originate from partially oxidized copper substrates during annealing. These results exhibit that both a preparation method of an active materials and partially oxidized current collectors could be important roles to apply thin film electrodes.

산화 그래핀을 절연층으로 사용한 유연한 ReRAM과 다층 절연층 ReRAM의 제작 방법 및 결과 비교 (A Review: Comparison of Fabrication and Characteristics of Flexible ReRAM and Multi-Insulating Graphene Oxide Layer ReRAM)

  • 김동균;김태헌;윤태환;박정호
    • 전기학회논문지
    • /
    • 제65권8호
    • /
    • pp.1369-1375
    • /
    • 2016
  • A rapid progress of the next-generation non-volatile memory device has been made in recent years. Metal/insulator/Metal multi-layer structure resistive RAM(ReRAM) has attracted a great deal of attention because it has advantages of simple fabrication, low cost, low power consumption, and low operating voltage. This paper describes the working principle of the ReRAM device, a review of fabrication techniques, and characteristics of flexible ReRAM devices using graphene oxide as an insulating layer and ReRAM devices using multi-layered insulator. The switching characteristics of the above ReRAM devices have been compared. The oxidized graphene could be employed as an insulator of next generation ReRAM devices.

Al/LB/Al, Au/LB/Au 전극 구조에서 arachidic acid LB막의 전기적 특성에 관한 비교 연구 (A comparative study of electrical properties of arachidic acid LB films in the Al/LB/Al and Au/LB/Au electrode structure)

  • 오세중;김정수
    • 대한전기학회논문지
    • /
    • 제44권10호
    • /
    • pp.1311-1316
    • /
    • 1995
  • The electrical properties of the Langmuir-Blodgett (LB) films layered with arachidic acid were studied at the room temperature. The sample was formed with 2 different structure ; One was Al/LB/Al and the other was Au/LB/Au. The precise structure of Al/LB/Al was considered as Al/Al$_{2}$O$_{3}$/LB/Al, because the natural oxide layer was formed on surface of lower Al electrode. The electrical conductivity of Al/Al$_{2}$O$_{3}$/LB/Al structure was determined the value of 3.5 * 10$^{-14}$ S/cm from the measurement of current-voltage (I-V) characteristics. The sample with the structure of Au/LB/Au was made to eliminate the influence of oxide layer in the electrical properties of the LB films. The short circuit current was observed in this sample from the I-V characteristics. To verify the reason of short circuit current generation, copper decoration method was employed to the 15 layers of LB films deposited on the Al and Au electrode each. The defects were shown on the films deposited with Au electrode. This results means that the defects on the LB films which layered with the Au electrode were contributed to the short circuit current. Several films (15, 31, 51, 71L) were deposited on the Au electrode and measured the size of defects with the copper decoration method. The size of defects becomes smaller as the film layer was increased. We conclude that the existence of defects affects the short circuit current generation.

  • PDF