• Title/Summary/Keyword: Layered Manufacturing

Search Result 133, Processing Time 0.026 seconds

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems

  • She, Gui-Lin;Ren, Yi-Ru;Yuan, Fuh-Gwo
    • Steel and Composite Structures
    • /
    • v.31 no.6
    • /
    • pp.641-653
    • /
    • 2019
  • In this paper, wave propagation is studied and analyzed in double-layered nanotubes systems via the nonlocal strain gradient theory. To the author's knowledge, the present paper is the first to investigate the wave propagation characteristics of double-layered porous nanotubes systems. It is generally considered that the material properties of nanotubes are related to the porosity and hygro-thermal effects. The governing equations of the double-layered nanotubes systems are derived by using the Hamilton principle. The dispersion relations and displacement fields of wave propagation in the double nanotubes systems which experience three different types of motion are obtained and discussed. The results show that the phase velocities of the double nanotubes systems depend on porosity, humidity change, temperature change, material composition, non-local parameter, strain gradient parameter, interlayer spring, and wave number.

Multi-Layered Matrix Tablets with Various Tablet Designs and Release Profiles

  • Choi, Du-Hyung;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.263-272
    • /
    • 2011
  • Tablet dosage forms have been preferred over other formulations for the oral drug administration due to their low manufacturing costs and ease of administrations, especially controlled-release applications. Controlled-release tablets are oral dosage forms from which the active pharmaceutical ingredient (API) is released over an intended or extended period of time upon ingestion. This may allow a decrease in the dosing frequency and a reduction in peak plasma concentrations and hence improves patient compliance while reducing the risk of undesirable side effects. Conventional singlelayered matrix tablets have been extensively utilized to deliver APIs into the body. However, these conventional single-layered matrix tablets present suboptimal delivery properties, such as non-linear drug delivery profiles which may cause higher side effects. Recently, a multi-layered technology has been developed to overcome or eliminate the limitations of the singlelayered tablet with more flexibility. This technology can give a good opportunity in formulating new products and help pharmaceutical companies enhancing their life cycle management. In this review, a brief overview on the multi-layered tablets is given focusing on the various tablet designs, manufacturing issues and drug release profiles.

Manufacturing of High-Performance Double Layered Tube with Corrugated Internal Pattern via the Hydroforming Process (액압 성형을 이용한 내부복합파형 고효율 이중관 제조 기술)

  • Han, S. W.;Kim, D. Y.;Moon, Y. H.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.143-150
    • /
    • 2022
  • The purpose of this study was to investigate an innovative hydroforming process for the cost-effective manufacturing of double layered tube with circumferentially corrugated patterns. Conventional double pipe heat exchanger has relatively poor heat transfer efficiency because of the limited contact area resulting from the concentrically arranged simple cylindrical structure. As a promising alternative to enhance heat transfer efficiency, double layered tube with corrugated internal pattern was considered in this study. To fabricate corrugated inner tube, innovative tube hydroforming system was developed. The customized loading paths were established using the simulated forming pressure and contracting stroke at various bar diameters. Experimentally obtained cross-sectional profiles were analyzed to evaluate the reliability and applicability of the hydroformed tube with various patterns. The results demonstrate that the proposed hydroforming process can be a feasible alternative for manufacturing high-performance double-tube heat exchangers.

A Study on the Frosting Phenomena of Abrasive Waterjet Microcutting for Multi-Layered Materials (연마제 워터젯을 이용한 복합재 미세가공의 백화현상에 대한 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyoung;Go, Jeung-Sang;Shin, Bo-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.183-190
    • /
    • 2007
  • It is well known that abrasive waterjet(AWJ) was developed as a kind of high-density energy processing technologies. AWJ is used to obtain the better cutting quality of various materials such as metals, ceramics, glass and composite materials within a short manufacturing time because of the characteristics of heatless and noncontact processing. However, AWJ device still has some problems to obtain the high quality of thin workpiece. In this paper, we investigated the optimal microcutting conditions of AWJ, such as maximum pressure, cutting speed and standoff distance of thin multi-layered materials. The experimental results show that AWJ has possibilities and potential to apply to the microcutting of thin multi-layered materials for IT industrial applications.

Efficient Layered Manufacturing Method of Metallic Sandwich Panel with Pyramidal Truss Structures using Infrared Brazing and its Mechanical Characteristics (피라미드 트러스형 금속 샌드위치 판재의 적외선 브레이징을 이용한 효율적 적층식 제작 및 특성에 관한 연구)

  • Lee, Se-Hee;Seong, Dae-Yong;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.76-83
    • /
    • 2010
  • Metallic sandwich panels with pyramidal truss structures are high-stiffness and high-strength materials with low weight. In particular, bulk structures have enough space for additional multi-functionalities. In this work, in order to fabricate 3-D structures efficiently, Layered Manufacturing Method (LMM) which was composed of three steps, including crimping process, stacking process and bonding process using rapid infrared brazing, was proposed. The joining time was drastically reduced by employing infrared brazing of which heating rate and cooling rate were faster than those of conventional furnace brazing. By controlling the initial cooling rate slowly, the bonding strength was improved up to the level of strength by conventional vacuum brazing. The observation of infrared brazed specimens by optical microscope and SEM showed no defect on the joining sections. The experiments of 1-layered pyramidal structures and 2-layered pyramidal structures subject to 3-point bending were conducted to determine structural advantages of multilayered structures. From the results, the multi-layered structure has superior mechanical properties to the single-layered structure.

Bench Mark Test on Rapid Prototyping Processes and Machines for Functional Prototypes (기능성 시제품 생산용 쾌속조형공정의 성능비교시험)

  • Kim Gi-Dae;Sung Joo-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.187-195
    • /
    • 2006
  • FDM, SLS, and EOS processes are the layered manufacturing processes far functional prototypes. In this paper, bench mark tests of those processes were carried out using various materials. The test includes mechanical properties, such as tensile and compressive strengths, hardness, impact strength, and heat resistance, and surface roughness, shape and dimensional accuracy, manufacturing time, and manufacturing costs. It is verified that SLS method is advantageous in surface roughness and manufacturing time, EOS method in shape accuracy, and FDM method is great in manufacturing costs.

An Efficient Decision Maki ng Method for the Selectionof a Layered Manufacturing (3차원 조형장비 선정을 위한 효율적인 의사결정 방법)

  • Byun, Hong-Seok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.59-67
    • /
    • 2009
  • The purpose of this study is to provide a decision support to select an appropriate layered manufacturing(LM) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model far molding, material property, build time and part cost that greatly affect the performance of LM machines. However, the selection of a LM is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate LM machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify LM machines that the users consider After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of LM machines.

Hydroforming Characteristics of Double Layered Tube (이중튜브의 액압 성형특성 연구)

  • Kwon, S.O.;Yi, H.K.;Chung, G.S.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.567-574
    • /
    • 2007
  • Double layered tube is assembled with an inner tube and an outer tube, similar in material or not, contacting closely and deforming simultaneously when subjected to external force. For the manufacturing of double layered tube, the hydroforming assembly technology has several advantages. Therefore in this study, hydroforming characteristics of double layered tube was investigated. The free bulge test was performed to produce formability diagrams of double layered tubes at various forming pressure and feeding amounts. The hexagonal shape hydroforming test was also performed to estimate the dimensional accuracies of double layered tube through the corner filling ratio and the gap between inner and outer tube. Besides experimental analyses, the analytical model that can predict internal pressure for the hydroforming of double-layered tube was proposed and experimentally validated.