• Title/Summary/Keyword: Layer-by-layer learning

Search Result 642, Processing Time 0.025 seconds

The Strategy making Process For Automated Negotiation System Using Agents (에이전트를 이용한 자동화된 협상에서의 전략수립에 관한 연구)

  • Jeon, Jin;Park, Se-Jin;Kim, Sung-Sik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.207-216
    • /
    • 2000
  • Due to recent growing interest in autonomous software agents and their potential application in areas such as electronic commerce, the autonomous negotiation become more important. Evidence from both theoretical analysis and observations of human interactions suggests that if decision makers have prior information on opponents and furthermore learn the behaviors of other agents from interaction, the overall payoff would increase. We propose a new methodology for a strategy finding process using data mining in autonomous negotiation system ; ANSIA (Autonomous Negotiation System using Intelligent Agent). ANSIA is a strategy based negotiation system. The framework of ANSIA is composed of following component layers : 1) search agent layer, 2) data mining agent layer and 3) negotiation agent layer. In the data mining agent layer, that plays a key role as a system engine, extracts strategy from the historic negotiation is extracted by competitive learning in neural network. In negotiation agent layer, we propose the autonomous negotiation process model that enables to estimate the strategy of opponent and achieve interactive settlement of negotiation. ANISIA is motivated by providing a computational framework for negotiation and by defining a strategy finding model with an autonomous negotiation process.

  • PDF

Efficient weight initialization method in multi-layer perceptrons

  • Han, Jaemin;Sung, Shijoong;Hyun, Changho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.09a
    • /
    • pp.325-333
    • /
    • 1995
  • Back-propagation is the most widely used algorithm for supervised learning in multi-layer feed-forward networks. However, back-propagation is very slow in convergence. In this paper, a new weight initialization method, called rough map initialization, in multi-layer perceptrons is proposed. To overcome the long convergence time, possibly due to the random initialization of the weights of the existing multi-layer perceptrons, the rough map initialization method initialize weights by utilizing relationship of input-output features with singular value decomposition technique. The results of this initialization procedure are compared to random initialization procedure in encoder problems and xor problems.

  • PDF

Modified Multi-layer Bidirectional Associative Memory with High Performance (성능이 향상된 수정된 다층구조 영방향연상기억메모리)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.93-99
    • /
    • 1993
  • In previous paper we proposed a multi-layer bidirectional associative memory (MBAM) which is an extended model of the bidirectional associative memory (BAM) into a multilayer architecture. And we showed that the MBAM has the possibility to have binary storage for easy implementation. In this paper we present a MOdified MBAM(MOMBAM) with high performance compared to MBAM and multi-layer perceptron. The contents will include the architecture, the learning method, the computer simulation results for MOMBAM with MBAM and multi-layer perceptron, and the convergence properties shown by computer simulation examples.. And we will show that the proposed model can be used as classifier with a little restriction.

  • PDF

A Modified Error Function to Improve the Error Back-Propagation Algorithm for Multi-Layer Perceptrons

  • Oh, Sang-Hoon;Lee, Young-Jik
    • ETRI Journal
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1995
  • This paper proposes a modified error function to improve the error back-propagation (EBP) algorithm for multi-Layer perceptrons (MLPs) which suffers from slow learning speed. It can also suppress over-specialization for training patterns that occurs in an algorithm based on a cross-entropy cost function which markedly reduces learning time. In the similar way as the cross-entropy function, our new function accelerates the learning speed of the EBP algorithm by allowing the output node of the MLP to generate a strong error signal when the output node is far from the desired value. Moreover, it prevents the overspecialization of learning for training patterns by letting the output node, whose value is close to the desired value, generate a weak error signal. In a simulation study to classify handwritten digits in the CEDAR [1] database, the proposed method attained 100% correct classification for the training patterns after only 50 sweeps of learning, while the original EBP attained only 98.8% after 500 sweeps. Also, our method shows mean-squared error of 0.627 for the test patterns, which is superior to the error 0.667 in the cross-entropy method. These results demonstrate that our new method excels others in learning speed as well as in generalization.

  • PDF

Text-Independent Speaker Identification System Based On Vowel And Incremental Learning Neural Networks

  • Heo, Kwang-Seung;Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1042-1045
    • /
    • 2003
  • In this paper, we propose the speaker identification system that uses vowel that has speaker's characteristic. System is divided to speech feature extraction part and speaker identification part. Speech feature extraction part extracts speaker's feature. Voiced speech has the characteristic that divides speakers. For vowel extraction, formants are used in voiced speech through frequency analysis. Vowel-a that different formants is extracted in text. Pitch, formant, intensity, log area ratio, LP coefficients, cepstral coefficients are used by method to draw characteristic. The cpestral coefficients that show the best performance in speaker identification among several methods are used. Speaker identification part distinguishes speaker using Neural Network. 12 order cepstral coefficients are used learning input data. Neural Network's structure is MLP and learning algorithm is BP (Backpropagation). Hidden nodes and output nodes are incremented. The nodes in the incremental learning neural network are interconnected via weighted links and each node in a layer is generally connected to each node in the succeeding layer leaving the output node to provide output for the network. Though the vowel extract and incremental learning, the proposed system uses low learning data and reduces learning time and improves identification rate.

  • PDF

Optimal Synthesis Method for Binary Neural Network using NETLA (NETLA를 이용한 이진 신경회로망의 최적 합성방법)

  • Sung, Sang-Kyu;Kim, Tae-Woo;Park, Doo-Hwan;Jo, Hyun-Woo;Ha, Hong-Gon;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2726-2728
    • /
    • 2001
  • This paper describes an optimal synthesis method of binary neural network(BNN) for an approximation problem of a circular region using a newly proposed learning algorithm[7] Our object is to minimize the number of connections and neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm(NETLA) for the multilayer BNN. The synthesis method in the NETLA is based on the extension principle of Expanded and Truncated Learning(ETL) and is based on Expanded Sum of Product (ESP) as one of the boolean expression techniques. And it has an ability to optimize the given BNN in the binary space without any iterative training as the conventional Error Back Propagation(EBP) algorithm[6] If all the true and false patterns are only given, the connection weights and the threshold values can be immediately determined by an optimal synthesis method of the NETLA without any tedious learning. Futhermore, the number of the required neurons in hidden layer can be reduced and the fast learning of BNN can be realized. The superiority of this NETLA to other algorithms was proved by the approximation problem of one circular region.

  • PDF

CNN Applied Modified Residual Block Structure (변형된 잔차블록을 적용한 CNN)

  • Kwak, Nae-Joung;Shin, Hyeon-Jun;Yang, Jong-Seop;Song, Teuk-Seob
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.803-811
    • /
    • 2020
  • This paper proposes an image classification algorithm that transforms the number of convolution layers in the residual block of ResNet, CNN's representative method. The proposed method modified the structure of 34/50 layer of ResNet structure. First, we analyzed the performance of small and many convolution layers for the structure consisting of only shortcut and 3 × 3 convolution layers for 34 and 50 layers. And then the performance was analyzed in the case of small and many cases of convolutional layers for the bottleneck structure of 50 layers. By applying the results, the best classification method in the residual block was applied to construct a 34-layer simple structure and a 50-layer bottleneck image classification model. To evaluate the performance of the proposed image classification model, the results were analyzed by applying to the cifar10 dataset. The proposed 34-layer simple structure and 50-layer bottleneck showed improved performance over the ResNet-110 and Densnet-40 models.

Position Control of The Robot Manipulator Using Fuzzy Logic and Multi-layer Neural Network (퍼지논리와 다층 신경망을 이용한 로봇 매니퓰레이터의 위치제어)

  • Kim, Jong-Soo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.17-32
    • /
    • 1992
  • The multi-layer neural network that has broadly been utilized in designing the controller of robot manipulator possesses the desirable characteristics of learning capacity, by which the uncertain variation of the dynamic parameters of robot can be handled adaptively, and parallel distributed processing that makes it possible to control on real-time. However the error back propagation algorithm that has been utilized popularly in the learning of the multi-layer neural network has the problem of its slow convergence speed. In this paper, an approach to improve the convergence speed is proposed using the fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manupulator.

  • PDF

Convolutional neural network based amphibian sound classification using covariance and modulogram (공분산과 모듈로그램을 이용한 콘볼루션 신경망 기반 양서류 울음소리 구별)

  • Ko, Kyungdeuk;Park, Sangwook;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-65
    • /
    • 2018
  • In this paper, a covariance matrix and modulogram are proposed for realizing amphibian sound classification using CNN (Convolutional Neural Network). First of all, a database is established by collecting amphibians sounds including endangered species in natural environment. In order to apply the database to CNN, it is necessary to standardize acoustic signals with different lengths. To standardize the acoustic signals, covariance matrix that gives distribution information and modulogram that contains the information about change over time are extracted and used as input to CNN. The experiment is conducted by varying the number of a convolutional layer and a fully-connected layer. For performance assessment, several conventional methods are considered representing various feature extraction and classification approaches. From the results, it is confirmed that convolutional layer has a greater impact on performance than the fully-connected layer. Also, the performance based on CNN shows attaining the highest recognition rate with 99.07 % among the considered methods.

Analysis and Orange Utilization of Training Data and Basic Artificial Neural Network Development Results of Non-majors (비전공자 학부생의 훈련데이터와 기초 인공신경망 개발 결과 분석 및 Orange 활용)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Through artificial neural network education using spreadsheets, non-major undergraduate students can understand the operation principle of artificial neural networks and develop their own artificial neural network software. Here, training of the operation principle of artificial neural networks starts with the generation of training data and the assignment of correct answer labels. Then, the output value calculated from the firing and activation function of the artificial neuron, the parameters of the input layer, hidden layer, and output layer is learned. Finally, learning the process of calculating the error between the correct label of each initially defined training data and the output value calculated by the artificial neural network, and learning the process of calculating the parameters of the input layer, hidden layer, and output layer that minimize the total sum of squared errors. Training on the operation principles of artificial neural networks using a spreadsheet was conducted for undergraduate non-major students. And image training data and basic artificial neural network development results were collected. In this paper, we analyzed the results of collecting two types of training data and the corresponding artificial neural network SW with small 12-pixel images, and presented methods and execution results of using the collected training data for Orange machine learning model learning and analysis tools.