• 제목/요약/키워드: Layer charge density

검색결과 208건 처리시간 0.03초

재활용을 고려한 HDPE/EVA필름의 전계분포 및 체적저항특성 해석 (Analysis of Electric Field Distribution and Characteristics of Volume Resistivity in HDPE/EVA Film for Recycling)

  • 이홍규;임기조;김용주
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.801-807
    • /
    • 2008
  • Recently, CV, CN-CV and CNCV-W cable are used for HVDC transmission and distribution cable. However, XLPE which is used as insulation layer of power cable has thermosetting properties. It is very difficult to recycling. In this paper, we prepared HDPE/EVA film, which the blending ratio are 80:20, 70:30, 60:40, 50;50 respectively for the purpose of recycling. Main factor such as electric field distribution and its resistivity in insulation system affected on insulation performance and reliability for HVDC applications. Therefore, electric field distribution formed by space charge and characteristics of volume resistivity was currently investigated. We suggest the possibility of utilization for HVDC insulation layer from the results.

에너지 준위 접합 최적화를 통한 유기태양전지 효율 향상법 (Optimization of energy level alignment for efficient organic photovoltaics)

  • 이현복
    • 진공이야기
    • /
    • 제2권2호
    • /
    • pp.12-16
    • /
    • 2015
  • Organic photovoltaics (OPVs) have attracted significant interest in an interdisciplinary research field for the decades as a next-generation photovoltaic device due to their unique advantages. One of requirements for OPVs having high power conversion efficiency is the favorable energy level alignment between the electrode/organic and organic/organic interfaces to manage the exciton dissociation and improve the charge transport. In this review, strategies to enhance the OPV performance by controlling the energy level alignment are discussed. The insertion of an exciton blocking layer leads to the efficient dissociation of photogenerated excitons at the donor/acceptor interface enhancing the short-circuit current density. The choice of a donor having a high ionization energy and an acceptor having a low electron affinity increases the open-circuit voltage. The insertion of an appropriate work function modifier which reduces the charge injection barrier removes the S-kink in current density-voltage characteristics of OPVs and improves the fill factor. This review would give a valuable guide to design the efficient OPV structure.

Physical Properties of Mercaptopyruvic-acid Layer Formed on Gold Surfaces

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2611-2616
    • /
    • 2011
  • We studied the physical properties of the mercaptopyruvic-acid layer formed on gold surfaces, which has the interactions with the titanium dioxide surface for design of gold- titanium dioxide distribution. Surface force measurements were performed, using the atomic force microscope (AFM), between the surfaces as a function of the salt concentration and pH value. The forces were analyzed with the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory, to evaluate the potential and charge density of the surfaces quantitatively for each salt concentration and each pH value. The difference in the properties reflected the effect of the isoelectric point on the surface forces. The forces were interpreted for the evaluation with the law of mass action and the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8.0, was consistent with the prediction from the law. It was found that the mercaptopyruvic-acid layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8, which may be attributed to the ionized-functional-groups of the mercaptopyruvic-acid layer.

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • 공업화학
    • /
    • 제33권3호
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

층상자기조립법을 이용한 나노구조체의 제조와 응용 (Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications)

  • 조진한
    • 한국진공학회지
    • /
    • 제19권2호
    • /
    • pp.81-90
    • /
    • 2010
  • 층과 층 사이의 정전기적인력, 수소결합 또는 공유결합을 이용하여 층당 두께를 수 옹스트롱에서부터 수십 나노미터까지 제조할 수 있으며 박막의 표면 형태를 흡착시키고자 하는 물질 및 박막 후처리 공정을 통해 제어할 수 있으며 더 나아가, 삽입하는 물질의 특성에 따라 박막의 기능성을 집적화 및 다양화시킬 수 있다. 본 연구에서는 이러한 층상자기조립방법의 특성을 이용하여 반사방지막, 초소수성 필름 및 전기화학센서로의 응용가능성을 제시하였다. 반사방지막의 경우, 구형의 블록공중합체를 유리기판 위에 다층박막으로 적층시킴으로써 박막 굴절률을 1.25까지 감소시켰고 이를 통해 약 99.5%의 빛 투과도를 달성할 수 있었다. 더 나아가 바이오물질인 엔자임을 다층박막에 삽입시킬 경우, 활성 산소를 분해시키는 전기화학센서로의 제조가 가능함을 보인다. 본 연구는 본인이 이미 발표한 논문(J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007))들을 정리하여 층상자기조립법에 관해 소개하는 논문이다.

Performance of Zn-based oxide thin film transistors with buried layers grown by atomic layer deposition

  • 안철현;이상렬;조형균
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.77.1-77.1
    • /
    • 2012
  • Zn 기반 산화물 반도체는 기존의 비정질 Si에 비해 저온공정에도 불구하고 높은 이동도, 투명하다는 장점으로 인해 차세대 디스플레이용 백플레인 소자로 주목받고 있다. 산화물 트랜지스터는 우수한 소자특성을 보여주고 있지만, 온도, 빛, 그리고 게이트 바이어스 스트레스에 의한 문턱전압의 불안정성이 문제의 문제를 해결해야한다. 산화물 반도체의 문턱전압의 불안정성은 유전체와 채널층의 계면 혹은 채널에서의 charge trap, photo-generated carrier, ads-/desorption of molecular 등의 원인으로 보고되고 있어, 고신뢰성의 산화물 채널층을 성장하기 위한 노력이 이루어지고 있다. 최근, 산화물 트랜지스터의 다양한 조건에서의 문턱전압의 불안정성을 해결하기 위해 산화물의 주된 결함으로 일컬어지고 있는 산소결핍을 억제하기 위해 성장공정의 제어 그리고, 산소와의 높은 binding energy를 같은 Al, Hf, Si 등과 같은 원소를 첨가하여 향상된 소자의 특성이 보고되고 있지만, 줄어든 산소공공으로 인해 이동도가 저하되는 문제점이 야기되고 있다. 이러한 문제점을 해결하기 위해, 최근에는 Buried layer의 삽입 혹은 bi-channel 등과 같은 방안들이 제안되고 있다. 본 연구는 atomic layer deposition을 이용하여 AZO bureid layer가 적용된 ZnO 트랜지스터의 특성과 안정성에 대한 연구를 하였다. 다결정 ZnO 채널은 유전체와의 계면에 많은 interface trap density로 인해 positive gate bias stress에 의한 문턱전압의 불안정성을 보였지만, AZO층이 적용된 ZnO 트랜지스터는 줄어든 interface trap density로 인해 향산된 stability를 보였다.

  • PDF

RF Magnetron Sputtering에 의한 $(Ba_{0.5}, Sr_{0.5})Tio_3$박막의 제조와 전기적 특성에 관한 연구 (Preparation and Electrical Properties of $(Ba_{0.5}, Sr_{0.5})Tio_3$Thin Films by RF Magnetron Sputtering)

  • 박상식;윤손길
    • 한국재료학회지
    • /
    • 제4권4호
    • /
    • pp.453-458
    • /
    • 1994
  • 256Mb DRAM에서 박막 커패시터로의 적용을 위해서$(Ba_{0.5}Sr_{0.5)/TiO_3$(BST)박막이 RF Magnetron Sprttering방법에 의해 제조되었다. BST박막의 결정화도는 기판온도가 높아짐에 따라 증가하였고 증착된 박막의 조성은 $(Ba_{0.48}Sr_{0.48)/TiO_{2.93}$이었다. 이때 Pt/Ti장벽층은 Si의 BST계면으로의 확산을 억제하였다. 100kHz에서의 유전상수 및 유전손실은 각각 320 및 0.022이었다. 인가전계도 (Charge Storage Density)는 40fC/$\mu \textrm{m}^{2}$, 누설전류밀도(Leakage Current Density)는 0.8$\mu A/\textrm{cm}^2$ 로서 RF Matnetron sputtering방법에 의해 제조된 BST 박막이 256Mb DRAM 적용 가능함을 보였다.

  • PDF

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

복합산화물 $(Ba Ca)TiO_3$-ZnO의 구조적 및 유전분극 특성 (The structural and dielectric polarization characteristics of composite oxide material in $(Ba Ca)TiO_3$-Zn)

  • 홍경진;임장섭;정우성;민용기;김용주;김태성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.239-246
    • /
    • 1997
  • The ZnO is stabilize dielectric constant over a broad temperature range because its addition makes the relaxation time short. In this study, the composite oxide material (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ was mixed by ZnO additive material and the dielectric polarization characteristics was studied. The relative density was over 90[%] at all specimen in the structural characteristics. Among of the specimen, the relative density of (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ with ZnO (0.4mol) has a 95[%]. The grain size of composite oxide material with an increasing ZnO increased and it was 1.0[.mu.m]-1.22[.mu.m]. In the electrical characteristics, the charge and discharge current was increased by ZnO addition. The dielectric relaxation time was increased by space charge polarization at above 110[.deg. C] and the dielectric relaxation time was fixed by space charge polarization of para-dielectric layer at below 110[.deg. C]. The dielectric relaxation time was maximum when the grain size was small. The dielectric relaxation time is decreased with an additive material ZnO and interface polarization, existing void at the grain and grain boundary. The remnant polarization is increased and the coercive electric field is decreased by ZnO.

  • PDF