• Title/Summary/Keyword: Layer Structure

Search Result 6,694, Processing Time 0.029 seconds

A Heating Apparatus for Semiconductor Manufacturing using Direct Heating Method (직접 가열 방식을 이용한 반도체 제조용 히팅 장치)

  • Jung, Soon-Won;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.408-411
    • /
    • 2008
  • As to this research is new structure of the semiconductor substrate heating apparatus. The fast thermoresponsive according to the direct heating structure of the heating plate layer adhering closely to the floor side of a substrate and the fast heat loss minimization can be accomplished. Moreover, the contact area of the sheath heater, which is the heating plate layer built-in heating apparatus, is increased, so that it has more heating valid area. For this, it adheres closely to the substrate, in which the photosensitive film is coated and the heating plate layer, adhering closely to the floor side of a substrate the mica layer which adheres closely to the floor side of the upper heating plate layer in order to minimize an insulation and heat loss, and the lower part of the mica layer and it is comprised of the floor plate layer. The heating plate layer forms the continued groove portion over the floor side whole. The sheath heater for heating a substrate is inserted with the groove portion and the heating plate layer is comprised. It is confirmed that by using the new substrate heating structure, the temperature change of the heating plate against the time is observed. Then, there is the electric power saving effect of about 40% in comparison with the existing method.

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Large-Scale Vortical Structures in The Developing Plane Mixing Layer Using LES

  • Seo, Taewon;Kim, Yeung-Chan;Keum, Kihyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Study of turbulent mixing layers has been a popular subject from the point of view of both practical application and phenomenological importance in engineering field. Turbulent mixing layers can be applied in many fields where rapid transition to turbulence is desirable in order to prevent boundary layer separation or to enhance mixing. The ability to control mixing, structure and growth of the shear flow would obviously have a considerable impact on many engineering applications. In addition to practical applications, free shear flows are one of the simplest flows to understand the fundamental mechanism in the transition process to turbulence. After the discovery of large-scale vortical structure in free shear flows many researchers have investigated the physical mechanism of generation and dissipation processes of the vortical structure. This study investigated the role of the large-scale vortical structures in the turbulent mixing layer using LES(Large-Eddy Simulation). The result shows that the pairing interaction of the vortical structure plays an important role in the growth rate of a mixing layer. It is found that the turbulence quantities depend strongly on the velocity ratio. It is also found that the vorticity in the high-velocity-side can extract energy from the mean flow, while the vorticity in the low-velocity-side lose energy by the viscous dissipation. Finally the results suggest the guideline to obtain the desired flow by control of the velocity ratio.

  • PDF

Numerical studies on the effects of the lateral boundary on soil-structure interaction in homogeneous soil foundations

  • Li, Z.N.;Li, Q.S.;Lou, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.421-434
    • /
    • 2005
  • In this paper, the finite element method is applied to investigate the effect of the lateral boundary in homogenous soil on the seismic response of a superstructure. Some influencing factors are presented and discussed, and several parameters are identified to be important for conducting soil-structure interaction experiments on shaking tables. Numerical results show that the cross-section width L, thickness H, wave propagation velocity and lateral boundaries of soil layer have certain influences on the computational accuracy. The dimensionless parameter L/H is the most significant one among the influencing factors. In other words, a greater depth of soil layer near the foundation should be considered in shaking table tests as the thickness of the soil layer increases, which can be regarded as a linear relationship approximately. It is also found that the wave propagation velocity in soil layer affects the numerical accuracy and it is suggested to consider a greater depth of the soil layer as the wave propagation velocity increases. A numerical study on a soil-structure experimental model with a rubber ring surrounding the soil on a shaking table is also conducted. It is found the rubber ring has great effect on the soil-structure interaction experiments on shaking table. The experimental precision can be improved by reasonably choosing the elastic parameter and width of the rubber ring.

Fabrication of the ITO/Mesh-Ag/ITO Transparent Electrode using Ag Nano- Thin Layer with a Mesh Structure and Its Characterization (메쉬 구조의 Ag 나노박막을 이용한 ITO/Mesh-Ag/ITO 고전도성 투명전극 제조 및 특성 분석)

  • Lee, Dong Hyun;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.100-104
    • /
    • 2019
  • The 'ITO/Ag/ITO' multilayers as a highly conductive and transparent electrode, even with the optimum thickness conditions, the transmittances were much lower than those of a single ITO layer on some ranges of the visible wavelength. In order to improve the transmittance, Ag layer was formed with mesh structure. Where, the thickness of the Ag layer was about 10 nm and the space between the Ag lines was varied from 2.9 ㎛ to 19.6 ㎛ with the fixed Ag width of about 1.2 ㎛ in order to vary an open ratio of the Ag mesh structure. The transmittance and sheet resistance in the ITO/Mesh-Ag/ITO multilayer structure were analyzed depending on the open ratio. As a result, a trade off in the open ratio was necessary in order to obtain the transmittance as high as possible and the sheet resistance as possible low. By the open ratio of about 86%, in the ITO/Mesh-Ag/ITO multilayer structure, the transmittance was nearly same as the single ITO layer and the sheet resistance was about 62.3 Ω/.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Dynamically Reconfigurable SoC 3-Layer Bus Structure (동적 재구성이 가능한 SoC 3중 버스 구조)

  • Kim, Kyu-Chull;Seo, Byung-Hyun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • Growth in the VLSI process and design technology is resulting into a continuous increase in the number of IPs on a chip to form a system. Because of many IPs on a single chip, efficient communication between IPs is essential. We propose a dynamically reconfigurable 3-layer bus structure which can adapt to the pattern of data transmission to achieve an efficient data communication between various IPs. The proposed 3-layer bus can be reconfigured to multi-single bus mode, and single-multi bus mode, thus providing the benefits of both single-bus and multi-bus modes. Experimental results show that the flexibility of the proposed bus structure can reduce data transmission time compared to the conventional fixed bus structure. We incorporated the proposed bus structure in a JPEG system and verified that the proposed structure achieved an average of 22% improvement in time over the conventional fixed bus structure.

  • PDF

Optimal Design of Laminate Composites with Gradient Structure for Weight Reduction

  • Back, Sung-Ki;Kang, Tae-Jin;Lee, Kyung-Woo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.68-72
    • /
    • 1999
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. Theoretical optimization results were then verified with experimental ones. The buckling load of laminate composite showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Experimental results agreed well with the theoretical ones. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF

Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures (다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조)

  • Cho, Gyoung-Sun;Kim, Gyu-Mi;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.