• 제목/요약/키워드: Layer Structure

검색결과 6,675건 처리시간 0.033초

콘크리트 다층바닥판 구조의 구조거동에 관한 해석적 연구 (Study on Structural Behavior of Multi-layered Concrete Floor Structure)

  • 유영준;송하원;변근주;정성철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.474-479
    • /
    • 1998
  • In this paper, the structural behavior of R.C. multi-layered floor structure including foam concrete layer is numerically analyzed. For the analysis, 3D interface element has been implemented to finite element analysis program to consider the interfacial behavior of multi-layered floor structure which consists of rubber layer, foam concrete layer and mortar layer on RC slab. Based on analysis results on multi-layered structure, its structural behavior is analyzed according to geometrical and material properties of foam concrete. Optimum material property of each layer of the floor structure is proposed to get optimum multi-layered concrete structure.

  • PDF

HIT 층 두께 변화를 통한 태양전지 효율 특성 (The characteristics of Efficiency through HIT layer thickness)

  • 김무중;편진호;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.232-232
    • /
    • 2010
  • Simulation Program (AFORS-HET 2.4.1) was used, include the basic structure of crystalline silicon thin film as above, under the intrinsic a-Si:H films bonded symmetrical structure (Symmetrical structure) were used. The structure of ITO, a-Si p-type, intrinsic a-Si, c-Si, intrinsic a-Si, a-Si n-type, metal (Al) layer has one of the seven. When thickness for each layer was given the change, the changes of a-Si p-type layer and the intrinsic a-Si layer on top had an impact on efficiency. Efficiency ratio of p-type a-Si:H layer thickness was sensitive to, especially a-Si: H layer thickness is increased in a rapid decrease in Jsc and FF, and efficiency was also decreased.

  • PDF

복합재료내의 계면 접착 특성에 따른 지능형 구조물의 진동제어에 관한 연구 (Studies on the Vibration Controllability of Smart Structure Depending on the Interfacial Adhesion Properties of Composite Materials)

  • 한상보;박종만;차진훈
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1093-1102
    • /
    • 1998
  • The success of controllability of smart structures depends on the quality of the bonding along the interface between the main structure and the attached sensing and acuating elements. Generally, the analysis procedures neglect the effect of the interfacial bond layer or assume that this bond layer behaves like viscoelastic material. Three different bond layers. two modified epoxy adhesives, and one isocyanate adhesive were prepared for their toughness and moduli. Bond layer of the chosen adhesive provides an almost perfect bonding condition between the composite structure and the PZT while bended significantly like arrow-shape. The perfect bonding condition is tested by considering various material properties of the bond layers. and based on this perfect bonding condition, the effects of the interfacial bond layer on the dynamic behavior and controllability of the test structure is experimentally studied. Once the perfect bonding condition is achieved. dynamic effects of the bond layer itself on the dynamic characteristics of the main structure is negligible. but the contribution of the attached PZT elements on the stiffness of the multi-layered structure becomes significant when the thickness of the bond layer increased.

  • PDF

자기유도방식 무선전력전송 시스템 송수신 코일 Layer 구조에 따른 특성 분석 (Analysis of Inductive Power Transfer System According to Layer Structure of Transceiver Coil)

  • 김철민;유재곤;김종수
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.78-83
    • /
    • 2019
  • In this study, we analyze the structure of the transceiver coil in the inductive power transfer (IPT) system. In the IPT system, the transceiver coil design needs to have the highest magnetic coupling possible because of the relatively low magnetic coupling due to the large gap of distance without the core. The transmitting coil may be formed as a multi-layer type according to the distance between the transmitting and receiving coils if the receiving coil is configured as a multi-layer type on the inner structure of the receiving apparatus, thereby improving the magnetic coupling and system efficiency. We compare and analyze the coil magnetic coupling, and system efficiency according to the layer structure of the transmitting and receiving coils and verify the analysis by JMAG simulation. Experimental results show that the layer structure of the transceiver should be considered according to the inner space of the receiving device and the spacing distance.

탄소나노튜브와 ZnS:Cu,Cl 형광체 무기 EL

  • 김진영;정동근;유세기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.68-68
    • /
    • 2010
  • Electroluminescence (EL) characteristics of green-emission ZnS:Cu,Cl-based ac-type inorganic powder electroluminescent structures were examined by inserting carbon nanotubes (CNTs) into or next to the dielectric layer. For the top-emission type EL structure, where the luminescent light was emitted from the top of the structure, was fabricated by assembling in order, a top electrode, an emitting layer, a dielectric layer, and a bottom electrode from the top. $BaTiO_3$ powder mixed with CNTs was used as a dielectric layer or CNTs were deposited between the bottom electrode and $BaTiO_3$ dielectric layer in order to improve the role of the dielectric layer in the structure. Luminance of an EL structure with CNTs inclusion was greatly enhanced possibly due to the high dielectric constant in the dielectric layer of $BaTiO_3$/CNTs, which is one of hot research topics utilizing nano-objects for intensifying dielectric constant and reducing dielectric loss at the same time. A variation on the CNTs themselves and their inclusion methods in the dielectric layer has been exhorted, and the underlying mechanism for the role of CNTs in the EL structure will be explained in the poster. In order to extend the flexibility of EL devices, EL devices were fabricated on the paper substrate and their performance was compared other EL devices on the plastic-based substrate.

  • PDF

투과전자현미경에 의한 HgCdTe/양극산화막/ZnS 계면 특성에 관한 연구 (TEM Study on the HgCdTe/Anodic oxide/ZnS Interfaces)

  • 정진원;김재묵;왕진석
    • 전자공학회논문지A
    • /
    • 제32A권9호
    • /
    • pp.121-127
    • /
    • 1995
  • We have analyzed the double insulating layer consisting of anodic oxide and ZnS through TEM experiments. The use of double insulating layer for HgCdTe surface passivation is one of the promising passivation method which has been recently studied deeply and the double insulating layer is formed by the evaporation of ZnS on the top of anodic oxide layer grown in H$_{2}$O$_{2}$ electrolyte. The structure of anodic oxide layer on HgCdTe is amorphous but the structure of oxide layer after the evaporation of ZnS has been changed to micro-crystalline. The interface layer of 150.angs. thickness has been found between ZnS and anodic oxide layer and is estimated to be ZnO layer. The results of analysis on the chemical components of ZnS, the interface layer and anodic oxide layer have showed that Zn has diffused into the anodic oxide layer deeply while Hg has been significantly decreased from HgCdTe bulk to the top of oxide layer. The formation of ZnO interface layer and the change of structure of anodic oxide layer after the evaporation of ZnS are estimated to be defects or to induce the defects which might possibly affect the increase of the positive fixed charges shown in C-V measurements of HgCdTe MIS.

  • PDF

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • 제20권3호
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

신뢰성 해석에 의한 내폭 CFRP-steel 복합구조의 최적화 설계 (Design Optimization of Blast Resistant CFRP-steel Composite Structure Based on Reliability Analysis)

  • 김정중;노혁천
    • 복합신소재구조학회 논문집
    • /
    • 제3권4호
    • /
    • pp.10-16
    • /
    • 2012
  • This study presents the effectiveness of a composite structure at improving blast resistance. The proposed composite structure consists of carbon fiber reinforced polymer (CFRP) and steel layers. While CFRP layer is used for blast energy reflection due to its high strength, steel layer is used for blast energy absorption due to its high ductility. A dynamic model is used to simulate the elastoplastic behavior of the proposed composite structure subject to blast load. Considering the magnitude variations of a blast event, the probability of failure of each layer is evaluated using reliability analysis. By assigning design probability of failure of each layer in the composite structure, the thickness of layers is optimized. A case study for the design of CFRP-steel composite structure subjected to an uncertain blast event is also presented.

2층 질하막 MNOS구조의 비휘발성 기억특성에 관한 연구 (A study on the nonvolatile memory characteristics of MNOS structures with double nitride layer)

  • 이형욱
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권8호
    • /
    • pp.789-798
    • /
    • 1996
  • The double nitride layer Metal Nitride Oxide Semiconductor(MNOS) structures were fabricated by variating both gas ratio and nitride thickness, and by duplicating nitride deposited and one nitride layer MNOS structure to improve nonvolatile memory characteristics of MNOS structures by Low Pressure Chemical Vapor Deposition(LPCVD) method. The nonvolatile memory characteristics of write-in, erase, memory retention and degradation of Bias Temperature Stress(BTS) were investigated by the homemade automatic .DELTA. $V_{FB}$ measuring system. In the trap density double nitride layer structures were higher by 0.85*10$^{16}$ $m^{-2}$ than one nitride layer structure, and the AVFB with oxide field was linearly increased. However, one nitride layer structure was linearly increased and saturated above 9.07*10$^{8}$ V/m in oxide field. In the erase behavior, the hole injection from silicon instead of the trapped electron emission was observed, and also it was highly dependent upon the pulse amplitude and the pulse width. In the memory retentivity, double nitrite layer structures were superior to one nitride layer structure, and the decay rate of the trapped electron with increasing temperature was low. At increasing the number on BTS, the variance of AVFB of the double nitride layer structures was smaller than that of one nitride layer structure, and the trapped electron retention rate was high. In this paper, the double nitride layer structures were turned out to be useful in improving the nonvolatile memory characteristics.

  • PDF

BLT 박막을 이용한 MFIS 구조에서 MgO buffer layer의 영향 (Effect of the MgO buffer layer for MFIS structure using the BLT thin film)

  • 이정미;김경태;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.23-26
    • /
    • 2003
  • The BLT thin film and MgO buffer layer were fabricated using a metalorganic decomposition method and the DC sputtering technique. The MgO thin film was deposited as a buffer layer on $SiO_2/Si$ and BLT thin films were used as a ferroelectric layer. The electrical of the MFIS structure were investigated by varying the MgO layer thickness. TEM showsno interdiffusion and reaction that suppressed by using the MgO film as abuffer layer. The width of the memory window in the C-Y curves for the MFIS structure decreased with increasing thickness of the MgO layer Leakage current density decreased by about three orders of magnitude after using MgO buffer layer. The results show that the BLT and MgO-based MFIS structure is suitable for non-volatile memory FETs with large memory window.

  • PDF