• Title/Summary/Keyword: Layer Growth

Search Result 2,529, Processing Time 0.037 seconds

Selection and Antifungal Activity of Antagonistic Bacterium Bacillus subtilis KMU-13 against Cucumber scab, Cladosporium cucumerinum KACC 40576 (검은별무늬병균 Cladosporium cucumerinum KACC 40576에 대한 길항균주 Bacillus subtilis KMU-13의 선발 및 항진균 활성)

  • Park Sung-Min;Lee Jun-Seuk;Park Chi-Duck;Lee Jung-Hun;Jung Hyuck-Jun;Yu Tae-Shick
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.42-48
    • /
    • 2006
  • Bacillus subtilis KMU-13 was isolated from the Lillehammer forest soils at Norway and shown a strong antifungal activity on cucumber scab, Cladosporium cucumerinum KACC 40576. B. subtilis KMU-13 produced a maximum level of antifungal substance under incubation aerobically at $30^{\circ}C$, 180 rpm for 48 hours in LB broth containing 0.5% maltose and 0.5% bactopeptone and initial pH adjusted to 6.0. Butanol extract of cultured broth was confirmed inhibitory zone by plate assay and Rf 0.64 value substance by thin layer chromatography (TLC) represented high antifungal activity against C. cucumerinum KACC 40576 and also shown fungal growth inhibitory activity against Botytis cinerea KACC 40573, C. gloeosporioides KACC 40804, D. byoniae KACC 40669, F. oxysporum KACC 40037, F. oxysporum KACC 40052, F. oxysporum f. sp. radicis-lycopersici KACC 40537, F. oxysporum KACC 40902, M. cannonballus KACC 40940, P. cambivora KACC 40160, R. soiani AG-1 KACC 40101, R. solani AG-4 KACC 40142, and S. scleotiorum KACC by agar diffusion method.

Mathematical Modeling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.118-125
    • /
    • 2002
  • Hydration is the main reason for the growth of the material properties. An exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development of all material properties and the formation of microstructure should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of W/C ratio on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The tatter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration. In this study, the effects of chemical composition of cement, W/C ratio, temperature, and moisture conditions on the degree of hydration are considered. Parameters that can be used to indicate or approximate the real degree of hydration are liberated heat of hydration, amount of chemically bound water, and chemical shrinkage, etc. Thus, the degree of heat liberation and adiabatic temperature rise could be determined by prediction of degree of hydration.

Study on low-level laser therapy device according to the obesity development (비만치료기 개발에 따른 저준위레이저에 관한 연구)

  • Lee, Sang-sik;Kim, Jun-tae;Jeong, Jin-hyoung;Kim, Nam-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • And by entering into an aging society with economic growth "beautiful and healthy desire to live', aesthetics industry as promote interest in 'Anti-aging' is emerging as a promising business increased significantly the skin care market. However, the management of the hospital or the temporal order to receive professional care providers, spatial, and cost constraints caused many companies to solve this problem began to approach the Home Care Area. Global trends in personal skin care market has been activated, the domestic has been activated at low cost, private market due to the recession. We have performed this test in order to develop a skin care device for home in order to compensate for this point.In this paper, we develop a low-level laser to create a personal skin care products and sought to incorporate them into the skin cosmetic.Expand the pores by using the low-level laser to the skin by to the dermal layer of the skin was penetrated aim experiment the ampoule, and by a comparison of the medical low-level laser reliability and determine the effectiveness or absence of the performance and efforts to commercialize.

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

THE EFFECTS OF THE FLUORIDE CONCENTRATION OF ACIDULATED BUFFER SOLUTIONS ON DENTINE REMINERALIZATION (유기산 완충용액의 불소농도가 상아질의 재광화에 미치는 영향)

  • Han, Won-Sub;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.526-536
    • /
    • 2009
  • The aim of this vitro-study is to evaluate the effects of fluoride on remineralization of artificial dentine caries. 10 sound permanent premolars, which were extracted for orthodontic reason within 1 week. were used for this study. Artificial dentine caries was created by using a partially saturated buffer solution for 2 days with grounded thin specimens and fractured whole-body specimens. Remineralization solutions with three different fluoride concentration (1 ppm. 2 ppm and 4 ppm) were used on demineralized-specimens for 7 days. Polarizing microscope and scanning electron microscope were used for the evaluation of the mineral distribution profile and morphology of crystallites of hydroxyapatite. The results were as follows: 1. When treated with the fluoride solutions, the demineralized dentine specimens showed remineralization of the upper part and demineralization of the lower part of the lesion body simultaneously. 2. As the concentration of fluoride increased, the mineral precipitation in the caries dentine increased. The mineral precipitation mainly occurred in the surface layer in 1 and 2 ppm- specimens and in the whole lesion body in 4 ppm -specimens. 3. When treated with the fluoride solution, the hydroxyapatite crystals grew. This crystal growth was even observed in the lower part of the lesion body which had shown the loss of mineral.

산란계 육성기 계란급이가 초기 산란 특징에 미치는 영향

  • 김상호;장병귀;최철환;서옥석;이상진;류경선
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.11a
    • /
    • pp.97-98
    • /
    • 2003
  • This experiment was conducted to investigate the effect of restricted feeding to pullet on growth and laying Performance, egg qualify and endocrine Profile in brown layers. 1,080 brown-layer chicks divided to three diet treatments, conventional diet and two restricted diets, for 70 weeks. Conventional diets(C) was formulated by NRC recommendation, and one of restricted diet started from seven to seventeen week of age(T1), and another started from twelve to seventeen(T2) with adjusted eighty percentage amount of conventional diet. Body weight decreased with starting restriction of feeding comparing to the C(P<0.05), but reached to similar weight in all treatments at twenty week regardless restriction. All of birds started to lay egg around 1,400 to 1,450gram of body weight though the age was in order of C, T2 and T1. Overall e99 Production was the highest in T1 (P<0.05) and there were not difference in C and T2. Average egg weight also showed similar to the tendency of egg production. Feed intake was higher in T1 during maximum production(P<0.05), but there were not difference in all treatments after the peak. Overall feed conversion ratio improved in T1 compared to C and T1(p<0.05). Restriction feeding in rearing period could be beneficial to improve egg productivity and to decrease feed cost.

  • PDF

Case study of good soil management in plastic film-house cultivation (시설하우스 재배농가의 우수토양관리 사례연구)

  • Hyun, Byung-Keun;Kim, Lee-Yul;Kim, Moo-Sung;Cho, Hyun-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.2
    • /
    • pp.98-104
    • /
    • 2001
  • Cultivation area of the plastic film-house has been continuously increased with the increase of consumers' income. Intensive land use without fallowing or crop rotation caused severe problem such as salt accumulation in soils and in turn retarded growth and low productivity. This study was carried out to solve them derived from longterm intensive farming practices. Seven farmers who are practicing plastic film-house cultivation were recommended for case study by municipal government and selected for their excellency of cultivation and soil management. The cultivation periods of these systems were in the range of 5 to 40 years in the regions mainly located in alluvial soil cultivated with cucumber, tomato and red pepper. The soils texture of the excellent farmers' fields were silt loam or sandy loam, ranged from 7 to 15 percents of clay contents. Soil bulk density, depth of plowing layer and soil aggregates contents of the farmers' soils were 0.89, 23.1 cm, 61.6% whereas those in neighboring soils were 1.10, 17.8 cm, 54.2 %, respectively. And pH, OM and $NO_3-N$ of the farmers' soils also were better than those of neighboring soils. There was no difference in population densities of nematode between the good farmers' and neighboring soils, but actinomyces and Fusarium densities of recommended farmers' soils were better than neighboring soils. The major farming practices by the good farmers were characterized by deep plowing with flooding, amendment of crude organic matter, and reduction of chemical fertilizer application before transplanting, and also drip irrigation and liquid manure application after planting. They also conducted solar sterilization with or without flooding, removal of plastic films during rainy days and culturing rice or corn as rotation crops to avoid the problems mentioned above.

  • PDF

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

Effects of Bagging Periods on Pericarp Characteristics and Berry Cracking in 'Kyoho' Grape (Vitis sp.) (괘대시기가 '거봉' 포도의 과피 특성과 열과에 미치는 영향)

  • Son, In-Chang;Kim, Dae-Il
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.381-386
    • /
    • 2010
  • The berry growth and pericarp characteristics were characterized to confirm the effects of bagging periods on berry cracking during berry development in 'Kyoho' grape. The berry weight was the highest at 13.4 g in late period of bagging treated at 7 to 9 weeks after full bloom (WAFB) as compared with the lowest of 12.3 g in total period bagging. The berry cracking rate under critical turgor pressure in the non-bagging control was 53.3%, while those of bagging treatments were decreased in the order of 42.7%, 37.3%, 33.3%, and 18.7% in bagged during 3 to 9, 3 to 5, 5 to 7, and 7 to 9 WAFB, respectively. In the results of observation on histological characteristics of pericarp, berry lenticels of whole bagging treatments had smaller and normal shape compared with non-bagging control treatment. Especially on the pericarp of late period bagged during 7 to 9 WAFB, suberization around stomata and micro-cracking were not observed and structural strength of pericarp was increased with thicker sub-epidermal layer and cell wall. Therefore, the results indicate that bagging treatment for two weeks just before the veraison when the day length and daylight is relatively longer and stronger can effectively reduce berry cracking by strengthening structure of pericarp in 'Kyoho' grape.