• Title/Summary/Keyword: Launching of Spacecraft

Search Result 9, Processing Time 0.022 seconds

Design Consideration and Verification on Random Vibration of Satellite Electronic Equipment while Launching (발사시 야기되는 랜덤진동을 고려한 위성체 전장품 설계 및 검증에 대한 연구)

  • 김홍배;서현석
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.971-976
    • /
    • 2000
  • High level random vibration environments induced while launching of spacecraft can damage sensitive electronic equipment, unless the equipment is properly packaged. Thus careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of electronic equipment of spacecraft. This paper describes the development process of Solar Array Regulator for KOMPAT-2, which is designed and tested by Korean engineers. Both analytical and experimental techniques are introduced in this paper.

  • PDF

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

Design and Verification of Satellite Electronic Equipment with the consideration of Random Vibration while Launching (발사시 야기되는 랜덤진동을 고려한 위성체 전장품 설계 및 검증에 대한 연구)

  • Kim, Hong-Bae;Seo, Hyun-Suk;Moon, Sang-Mu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1246-1251
    • /
    • 2000
  • High level random vibration environments induced while launching of spacecraft can damage sensitive electronic equipment very rapidly, unless the equipment is properly packaged. Thus very careful consideration on the launch environment, especially for high level random vibration, is required in the design stage of electronic equipment of spacecraft. This paper describes the development process of Solar Array Regulator for KOMPAT-2, which is designed and tested by Korean engineers. Both analytical and experimental techniques are introduced in this paper.

  • PDF

Regulations of Launch Services and Management of Satellites in the Japanese Space Activities Act (인공위성의 발사 및 관리에 관한 규제 논점 - 2016년 일본 '우주활동법'을 중심으로 -)

  • Kim, Young-Ju
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.151-208
    • /
    • 2020
  • Japan's two outer space-related laws were promulgated on November 16, 2016. There are the Act on Launching of Spacecraft, etc. and Control of Spacecraft (Act No. 76 of 2016, Space Activities Act) and the Act on Securing Proper Handling of Satellite Remote Sensing Records (Act No.77 of 2016, Remote Sensing Records Act). Japan's Space Activities Act states that a person who launches a satellite from the territory of Japan, or from a ship or airplane registered in Japan, must obtain permission from the Prime Minister prior to the launch. To obtain the permission, the person must have a certificate for a rocket design and for radio equipment at a launching facility. In addition, the ability to launch a rocket safely and the purpose for the satellite launch must be evaluated. Managing a satellite from Japan also requires permission from the government. A person who launches a rocket must have insurance for any potential damage arising from accidents, and the government is to supplement the potential compensation to allow for damage that cannot be covered by private insurance. The purpose of this paper reviews regulations of launch services and management of satellites in the Japan's Space Activities Act. It also offers some implications and suggestions for regulations of launching of spacecraft and management or operation of satellites.

Launch Environment Specification for KOMPSAT-2 (다목적위성 아리랑 2호 발사환경 규격설정)

  • Kim, Hong-Bae;Rhee, Joo-Hun;Kim, Sung-Hoon;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.165-169
    • /
    • 2000
  • High level vibrationional environments induced while launching of spacecraft can damage sensitive equipment or payloads, unless the equipment is properly designed. This is a critical issue for KOMPSAT-2 which will carry a high resolution electro-optic camera and a sophisticated attitude and orbit control system. Thus careful consideration on the launch environment is required in the design stage of spacecraft. This requires generation of vibration specification for each component. This paper describes the generation process of vibrational specification for KOMPAT-2, which is designed and tested by Korean engineers.

  • PDF

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.387-400
    • /
    • 2003
  • Since its launching on 21 December 1999, the Korea Multi-Purpose Satellite-I (KOMPSAT-I) has been successfully operated by the Mission Control Element (MCE), which was developed by the ETRI. Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft form injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations.

  • PDF

Technological Trends in Space Solar Sails (우주태양광 비행선의 기술 동향)

  • Yoon, Yong-Sik;Choi, Jung-Su;Kim, Hyung-Wan
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.24-30
    • /
    • 2010
  • Space solar sails are a form of spacecraft propulsion using the radiation pressure of light from a star or laser to push enormous ultra-thin mirrors to high speeds. With respect to it, U.S.A, Japan, E.U. and Russia, etc. have performed a substantial research and the space flight test. On May 2010, JAXA succeeded in launching the world's first interplanetary solar sail spacecraft "IKAROS" to Venus. Currently, solar sail propulsion is aimed chiefly at accomplishing a number of non-crewed missions in any part of the solar system and beyond. This paper presents the technology trend of advanced countries on the development of the solar sails as a new propulsion method for the space investigation and travel.

  • PDF

Operational Report of the Mission Analysis and Planning System for the KOMPSAT-I

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon;Lee, Seong-Pal;Kim, Hae-Dong;Kim, Eun-Kyou;Park, Hae-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.46-46
    • /
    • 2003
  • Since its launching on 21 December 1999, the KOrea Multi-Purpose SATellite-Ⅰ (KOMPSAT-Ⅰ) has been successfully operated by the Mission Control Element (MCE), which was developed by the Electronics and Telecommunications Research Institute (ETRI). Most of the major functions of the MCE have been successfully demonstrated and verified during the three years of the mission life of the satellite. The Mission Analysis and Planning Subsystem (MAPS), which is one of the four subsystems in the MCE, played a key role in the Launch and Early Orbit Phase (LEOP) operations as well as the on-orbit mission operations. This paper presents the operational performances of the various functions in MAPS. We show the performance and analysis of orbit determinations using ground-based tracking data and GPS navigation solutions. We present four instances of the orbit maneuvers that guided the spacecraft from injection orbit into the nominal on-orbit. We include the ground-based attitude determination using telemetry data and the attitude maneuvers for imaging mission. The event prediction, mission scheduling, and command planning functions in MAPS subsequently generate the spacecraft mission operations and command plan. The fuel accounting and the realtime ground track display also support the spacecraft mission operations. We also present the orbital evolutions during the three years of the mission life of the KOMPSAT-Ⅰ.

  • PDF

Thruster Loop Controller design of Sun Mode and Maneuver Mode for KOMPSAT-2 (ICCAS 2004)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1392-1395
    • /
    • 2004
  • In order to successfully develop attitude and orbit control subsystem(AOCS), AOCS engineer performs hardware selection, controller design and analysis, control logic and interface verification on electrical test bed, integrated system test, polarity test, and finally verification on orbit after launching. Attitude and orbit control subsystem for KOMPSAT-2 consists of standby mode, sun mode, maneuver mode, science mode, and power safe mode to stabilize and to control the spacecraft for performing the mission. The sun mode is usually divided into sun point submode, earth search submode and safe hold submode. The maneuver mode is divided into attitude hold submode and ${\triangle}$ V submode, while the science mode divided into science coarse submode and science fine submode. Moreover, it is added to back-up mode which uses wheels as an actuator for sun mode and maneuver mode. In this paper, we describe the controller design process and the performance of the design results with respect to the sun mode and the maneuver mode based on thrusters as an actuator using on flexible model.

  • PDF