• Title/Summary/Keyword: Launch noise

Search Result 111, Processing Time 0.034 seconds

Analysis on Acoustic Noise around Launch Pad Induced by the Launch of a Space Launch Vehicle (우주발사체 발사에 의한 발사장 주변의 음향 소음 분석)

  • Sim, Hyung-Seok;Choi, Kyu-Sung;Ko, Jeong-Hwan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.208-215
    • /
    • 2012
  • The acoustic noise around a launch pad by launches of space launch vehicles was analyzed. The magnitudes of sound noise at some points near launch pad were predicted by locating the sound source at the exhaust jet plume of the rocket engine and considering several factors such as the directivity of the sound propagation and atmospheric attenuation. Specifically, the launch noise of Korea Space Launch Vehicle-I (KSLV-I) was estimated, and was compared to the actual measurement results. The analysis results proved to be heavily affected by the characteristics of directivity of sound propagation and the analysis showed good agreements with the measurements when the directivity of the sound was appropriately adjusted.

Improved Prediction of Lift-off Acoustic Loads for a Launch Vehicle (발사체 이륙 시 음향 하중 예측 정확도 향상)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.207-210
    • /
    • 2014
  • This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. Intense acoustic load is generated when a launch vehicle is lifted off, and it can induce vibrations of a launch vehicle which cause damage or malfunction of a launch vehicle and a satellite. Lift-off acoustic loads of NARO are predicted by the modified Eldred's second method and the result is compared with the measured data in flight test. The prediction shows similar peak and shape of spectrum to the test data, but some discrepancy can be observed due to the predicted margin. In order to reduce such discrepancy, the sound pressure levels with four source distribution assumptions are calculated. Also, the surface diffraction effects are considered in the predict ion of lift-off acoustic loads, and the predicted result is more similar to the test data.

  • PDF

Launch Environment Test Results of Koreasat-3 (무궁화위성 3호 발사환경시험 결과분석)

  • Yang, Koon-Ho;Choi, Seong-Bong;Kim, Wone-Chul;Kim, Seong-Joong;HwangBo, Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1252-1258
    • /
    • 2000
  • Koreasat-3 was successfully launched by an Ariane IV launch vehicle on September 5, 1999. Although the primary purpose of the satellite is to replace Koreasat-l, it also can extend its communication service coverage over the Asia-Pacific region. A spacecraft is subjected to severe dynamic loads during launch period. To verify the safety of spacecraft under the launch environment, dynamic tests should be performed such as sine sweep, acoustic and separation shock tests. This paper presents the launch environment test results of Koreasat-3. A total of 188 acceleration responses was measured and compared with the design requirements of components and spacecraft. Dynamic characteristic change was also investigated by comparing between low-level pre/post vibration results. From the review of test results, it is concluded that Koreasat-3 was designed and manufactured with the margin of safety enough to survive the launch loads of Ariane IV.

  • PDF

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

LAUNCH ENVIRONMENT TEST OF KOMPSAT-1 SATELLITE

  • Lee, Sang-Seol;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1234-1239
    • /
    • 2000
  • KOMPSAT-1(Korea Multi-Purpose Satellite), which opened the space era in Korean peninsula, was developed from 1994 and launched successfully in December of 1999 at VAFB, USA. This paper presents a launch environment test of KOMPSAT and a short description of environment test facilities at Korea Aerospace Research Institute as well. The launch environment tests of KOMPSAT-1 satellite, such as vibration, acoustic, pyro-shock and mass properties measurement test, were performed during its system integration and test period. The participating engineers concluded that KOMPSAT-1 satellite would withstand environment during its launch period.

  • PDF

Modal Test of the 2nd Stage of Small Launch Vehicle (소형 위성 발사체 2단부 모드 시험)

  • Seo, Sang-Hyun;Jeong, Ho-Kyeong;Youn, Se-Hyun;Park, Soon-Hong;Jang, Young-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.258-261
    • /
    • 2006
  • The structure of small launch vehicle can be divided into engine section and payload section. This paper introduces modal test of the payload section of small launch vehicle which is composed to satellite, PLA (Payload Adapter), VEB (Vehicle Equipment Bay), KMS (Kick Motor Support) and KM (Kick Motor). From this test, dynamic properties of the 2nd stage structure of small launch vehicle can be obtained. In this test, to simulate free-free boundary condition, test object was hung by 4 bungee cords and excited by using impact hammer Modal test data are analyzed by using TDAS(Test Data Analysis Software). As the result, modal parameters and mode shapes below 100Hz of the 2nd stage of small launch vehicle were identified.

  • PDF

Drawing up a Noise Map under Launch Environment through Analyzing Jet Noise of Guided Weapon (유도무기의 제트소음 분석을 통한 발사환경에서의 소음지도 작성)

  • Kim, Sang-Min;Park, Woong;Ha, Jae-Hyoun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.163-168
    • /
    • 2011
  • Noise map is drawn up under launch environment through analyzing jet noise of guided weapon in this research. This has an important significance in terms of having an opportunity to look at influence of noise which is caused by guided weapon in the surrounding environment. In this paper, the magnitude of jet noise that was measured by using microphone and the result of numerical analysis that was gained by using ENPro which is environment noise prediction program are shown. At this point estimation of noise source was based on ISO 9613. Finally noise map derived from results mentioned above will become useful material when setting safety guide for protecting hearing loss of operator of weapon system in the future.

  • PDF

Comparative analysis of noise from three Falcon 9 launches (Falcon 9 로켓 3회 발사 소음의 비교 분석)

  • Mathews, Logan T.;Gee, Kent L.;Hart, Grant W.;Rasband, Reese D.;Novakovich, Daniel J.;Irarrazabal, Francisco I.;Vaughn, Aaron B.;Nelson, Pauline
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.322-330
    • /
    • 2020
  • This study investigates the far-field noise from three Falcon 9 vehicle launches from Vandenberg Air Force Base, CA, USA, as measured from the same location within the nearby community of Lompoc. The overall sound pressure levels for the three launches are shown to be similar, but some differences in the early launch period are thought to be weather-related. The peak directivity angle in overall level is approximately 65 deg, which is consistent with horizontally-fired, static rocket data. For the third launch, waveforms and spectra are analyzed for different events during the launch sequence. The measured spectral bandwidth decreases with time, but spectral levels remain above the ambient noise throughout the main-engine firing. Additionally, late-launch phenomena observed in the data appear to be correlated with main-engine cutoff and second-stage engine start.

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Effect of Source Line Location on Lift-off Acoustic Loads of a Launch Vehicle (음원 분포선 위치가 발사체 이륙 음향하중에 미치는 영향)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.539-545
    • /
    • 2015
  • Intense acoustic load is generated when a launch vehicle lifts off, causing the damaging vibrations at the launch vehicle or satellite within the fairing. This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. As a test example, the lift-off acoustic load on the Korean launch vehicle, NARO, is predicted by the existing calculation tool, the modified Eldred's second method. Although the acoustic sources, assumed as point sources, are to be located along the center line of the exhaust plume when using the Eldred's prediction method, the exact location of the deflected center line of exhaust gas flow is not usually known. To search for the most appropriate source positions, six models of source line distribution are suggested and the acoustic load prediction results from these models are compared with the actual measurements. It is found that the predicted sound pressure spectrum of the Naro is the most similar to the measured data when the centerline of the turbulent kinetic energy contour is used as the source line.