• Title/Summary/Keyword: Lattice structure

Search Result 1,137, Processing Time 0.026 seconds

An Acoustic Echo Canceller By Using the Reduced Lattice Filter Structure (축소격자필터 구조를 사용한 음향반향제거기)

  • 유재하;조성호;윤대희;차일환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1473-1480
    • /
    • 1995
  • When the LMS algorithm is employed in the transversal filter structure, the computational complexity can be kept reasonably low. However, if the impulse response to be estimated is very long or signals involved are highly correlated like a speech the convergence speed becomes slow. The lattice filter is an excellent alternative to improve convergence speed since the lattice structure inherently has the orthogonal property among the backward prediction errors, but at the expense of the excessive computational load. If the input signal to be used can be sufficiently well modeled as a .RHO.-th order autoregressive(AR) process, the reflection coefficients after the .RHO.- th stage will be close to zero. Then, instead of employing the full lattice structure, the joint lattice filter structure can be implemented in conjunction with the transversal filter structure after the .RHO.-th stage. We propose, in this paper, this new lattice/transversal joint structure, and we will call it the reduced lattice filter. Using the reduced lattice filter, we are now able to achieve the performance as good as that of the lattice filter, while maintaining the complexity as low as that of the transversal filter. The proposed filter is particularly useful for an acoustic echo canceller due to the highly correlatedness nature of speeches and the long and frequently changing echo paths.

  • PDF

The Effect of Vertical Strut in Circular Arch Lattice Structure by Selective Laser Sintering for Lightweight Structure

  • Sangwon Lee;Jae-An Jeon;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.173-179
    • /
    • 2023
  • The sandwich structure, consisting of a core and a face sheet, is used for lightweight structural application. Generally, cellular structures like honeycomb, foam, and lattice structures are utilized for the core. Among these, lattice structures have several advantages over other types of structures. In other studies, curved lattice structures were reported to have higher mechanical properties than straight structures by converting shear stresses acting on the structure into compressive stresses. Moreover, the addition of vertical struts can have a positive effect on the mechanical properties of the lattice structure. For the purpose, two lattice structures with Circle Arch (CC) and Circular Arch with a vertical column (CC_C) were studied, which were fabricated by using selective laser sintering was conducted. The result showed that CC_C has dramatic performance improvements in specific strength, modulus, and strain energy density compared to CC, confirming that vertical struts played a significant role in the lattice core. Finite element analysis was employed to determine the cause of the stress behavior of CC and CC_C. This study is expected to help design structurally superior lattice cores and sandwich structures.

Development and Evaluation of Large Scale Composite Lattice Structures (대형 복합재 격자구조체 개발 및 평가)

  • Kim, Donggeon;Doh, Youngdae;Kim, Gensang;Kim, Myungjoo;Lee, Sangwoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.6
    • /
    • pp.74-86
    • /
    • 2021
  • The composite lattice structure is a structure that supports the required load with the minimum weight and thickness. Composite lattice structure is manufactured by the filament winding process using impregnating high-strength carbon fiber with an epoxy resin. Filament winding process can laminate and manufacture only structurally necessary parts, composite lattice structure can be applied to aircraft fuselages, satellite and launch vehicles, and guided weapons to maximize weight reduction. In this paper, the development and evaluation of the composite lattice structure corresponding to the entire process from design, analysis, fabrication, and evaluation of large-scale cylindrical and conical composites lattice structure were performed. To be applicable to actual projectiles and guided weapons, we developed a cylindrical lattice structure with a diameter of 2,600 mm and a length of 2,000 mm, and a conical lattice structure with an upper diameter of 1,300 mm, a lower diameter of 2,500 mm, and a length of 900 mm. The performance of the developed composite lattice structure was evaluated through a load test.

SOME STRUCTURES ON A COMPLETE LATTICE

  • Lee, Seung On;Yon, Yong Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.211-221
    • /
    • 2007
  • In this paper, we define ${\bigwedge}$-structure, ${\bigvee}$-structure to generalize some lattices, and study the conditions that a lattice which has ${\bigwedge}$-structure or ${\bigvee}$-structure to be continuous or algebraic.

  • PDF

FOA (first-order-analysis) model of an expandable lattice structure for vehicle crash energy absorption of an inflatable morphing body

  • Lee, Dong-Wook;Ma, Zheng-Dong;Kikuchi, Noboru
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.617-632
    • /
    • 2011
  • A concept of crash energy absorbing (CEA) lattice structure for an inflatable morphing vehicle body (Lee et al. 2008) has been investigated as a method of providing rigidity and energy absorption capability during a vehicular collision (Lee et al. 2007). A modified analytical model for the CEA lattice structure design is described in this paper. The modification of the analytic model was made with a stiffness approach for the elastic region and updated plastic limit analysis with a pure plastic bending deformation concept and amended elongation factors for the plastic region. The proposed CEA structure is composed of a morphing lattice structure with movable thin-walled members for morphing purposes, members that will be locked in designated positions either before or during the crash. What will be described here is how to model the CEA structure analytically based on the energy absorbed by the CEA structure.

Adaptive Bilinear Lattice Filter(I)-Bilinear Lattice Structure (적응 쌍선형 격자필터(I) - 쌍선형 격자구조)

  • Heung Ki Baik
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.26-33
    • /
    • 1992
  • This paper presents lattice structure of bilinear filter and the conversion equations from lattice parameters to direct-form parameters. Billnear models are attractive for adaptive filtering applications because they can approximate a large class of nonlinear systems adequately, and usually with considerable parsimony in the number of coefficients required. The lattice filter formulation transforms the nonlinear filtering problem into an equivalent multichannel linear filtering problem and then uses multichannel lattice filtering algorithms to solve the nonlinear filtering problem. The lattice filters perform a Gram-Schmidt orthogonalization of the input data and have very good easily extended to more general nonlinear output feedback structures.

  • PDF

Design and Fabrication of Cone Type Composite Lattice Structures (Cone형 복합재 Lattice 구조물의 설계 및 공정 연구)

  • Doh, Young-Dae;Chung, Sang-Ki;Lee, Sang-Woo;Chang, Hong-Been
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.307-311
    • /
    • 2011
  • This paper is concerned with anisogrid composite lattice structures whose load bearing shell is formed by systems of geodesic unidirectional composite ribs made by automatic wet winding process. Lattice structures are usually made in the form of conical shell and consist of systems of helical and hoop ribs fabricated by continuous filament winding from carbon and epoxy composites. Design variables of the structure which are the angle of helical ribs and ribs spacings are determined by cone geometry and geodesic line. and Fabrication methods for the conical composite lattice structure are presented.

  • PDF

Structural Study of Epitaxial NiSi on Si (001) Substrate by Using Density Functional Theory (DFT) (DFT를 이용한 Si (001) 기판의 에피택시 NiSi 구조 연구)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.65-68
    • /
    • 2007
  • An epitaxial NiSi structure on Si (001) substrate was studied by using density functional theory (DFT). Orhorhombic and B2-NiSi structures were compared first. B2 structure was further considered as it has same crystal structure as Si and the lattice mismatch between B2 and Si is small, compared to orthorhombic-NiSi. The lattice parameters of x- and y-direction in B2-NiSi structure were modified to match with those in Si (001). The size reduction of the lattice parameter of B2-NiSi to match with that of Si increased the lattice parameter of z-direction by 10.5%. Therefore, we propose that an optimum structure of NiSi for epitaxial growth on Si (001) is a tetragonal structure.

  • PDF

Experimental Study on Enhancing Adhesion-Reactive Acrylic Compounds for Pore Filling in Additive Manufactured Metal Lattice Structures (금속 적층 제조 격자 구조체의 공극 충진용 부착력 증진 반응성 아크릴 화합물에 대한 실험적 연구)

  • Park, Kwang-Min;Park, Myung-Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.143-149
    • /
    • 2020
  • The purpose of this study is to manufacture a variable density - hybrid lattice structure control by filling the pore of the metal addictive manufactured lattice structure with lightweight reactive acrylic compounds(RAC). To apply the variable density - hybrid lattice structure to the construction industry, the enhancing adhesion - reactive acrylic compounds(EA-RAC) which increased the adhesion strength was manufactured by adding ordinary portland cement to the RAC. Finally, the EA-RAC was filled into the lattice structure to test the specific density, water absorption, and adhesion strength of the variable density - hybrid lattice structure. The results were obtained with density controllable, water absorption less than 1.0%, and 1-day bonding strength of 1.78 MPa to 1.98 MPa.