• Title/Summary/Keyword: Latitude

Search Result 1,046, Processing Time 0.041 seconds

Characteristics of mid-latitude field-aligned irregularities observed with VHF coherent scatter ionospheric radar over Korea

  • Yang, Tae-Yong;Kwak, Young-Sil;Kil, Hyosub;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.127.1-127.1
    • /
    • 2012
  • The 40.8-MHz VHF coherent scatter ionospheric radar, located in South Korea (Gyeryong, $36.18^{\circ}N$, $127.14^{\circ}E$), has been operating since December 2009 to investigate ionosphere E- and F-region field-aligned irregularities (FAIs) of mid-latitude. During the observation, we found E- and F-region FAIs appeared frequently: continuous echoes during the post-sunrise period and Quasi-Periodic (QP) echoes at nighttime for E region ; strong post-sunset and pre-sunrise FAIs for F region. The characteristics of E- and F-region FAIs are presented in terms of seasonal and local time variations of occurrence during December 2009 to August 2012. In addition, to investigate the correlation with geomagnetic activity to FAIs occurrence, we compared K-index variations to local time occurrence. It is worth to note our occurrence result since long term observation over several years in the mid-latitude has not yet been carried out.

  • PDF

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Characteristics of the Ionospheric Mid-Latitude Trough Measured by Topside Sounders in 1960-70s

  • Hong, Junseok;Kim, Yong Ha;Lee, Young-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.121-131
    • /
    • 2019
  • The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.

Seismic responses of hyperbolic cooling towers under horizontal and vertical earthquake

  • Zhang, Jun-Feng;Wang, Yuan-Hao;Li, Jie;Zhao, Lin
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.405-415
    • /
    • 2021
  • Following the dynamic property analysis and elaboration, linear response spectrum analysis (RSA) and response history analysis (RHA) were conducted on a representative hyperbolic cooling towers (HCT) in present study. The seismic responses in tower shell were illustrated in detail, including the internal force amplitude, modal contribution, influence from damping ratio, comparison of results got from RSA and RHA and especially the latitude distributions of internal forces. The results show that the eigenmodes could be classified in a new method into four types according to their mode shapes and only the lateral bending modes and vertical stretching modes are meaningful for horizontal and vertical earthquake correspondingly. The bending modes and seismic deformation display the same feature which is global lateral bending accompanied by minute circular flow displacement of section. This feature also decides the latitude distributions of internal forces as sine or cosine. Moreover, the following method is also proposed for approximate estimation of internal force amplitudes without time-consuming response history analysis: getting the response spectrums of the selected ground accelerations and then comparing values of response spectrums at the natural period of first lateral bending mode because it is always prime dominant for horizontal seismic responses.

LOCAL TIMES OF GALACTIC COSMIC RAY INTENSITY MAXIMUM AND MINIMUM IN THE DIURNAL VARIATION (우주선 세기 일변화 최대 및 최소 지방시)

  • Oh Su-Yeon;Yi Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2006
  • The Diurnal variation of galactic cosmic ray (GCR) flux intensity observed by the ground Neutron Monitor (NM) shows a sinusoidal pattern with the amplitude of $1{\sim}2%$ of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum aad minimum. To test the influences of the solar activity and the location (cut-off rigidity) on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum) and 2000 (solar maximum) at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV) and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV) NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about $2{\sim}3$ hours in the solar activity maximum year 2000 than in the solar activity minimum you 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by $2{\sim}3$ hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.

Connection between the Amplitude Variations of the GPS Radio Occultation Signals and Solar Activity

  • Pavelyev, A.G.;Liou, Y.A.;Wickert, J.;Pavelyev, A.A.
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.348-357
    • /
    • 2008
  • The classification of the effect of ionospheric disturbances on the radio occultation signal amplitude has been introduced based on an analysis of more than 2000 seances of radio occultation measurements per formed with the help of the CHAMP German satellite. The dependence of the histograms of variations in the radio occultation signal amplitude on the IMF variation index has been revealed. It has been indicated that it is possible to introduce the radio occultation index characterizing the relation between ionospheric disturbances and solar activity. An amplitude radio occultation (RO) method is proposed to study connection between the ionospheric and solar activity on a global scale. Sporadic amplitude scintillation observed in RO experiments contain important information concerning the seasonal, geographical, and temporal distributions of the ionospheric disturbances and depend on solar activity. The probability of strong RO amplitude variations (RO $S_4$ index greater than 0.2) in the CHAMP RO signals diminishes sharply with the weakening of solar activity from 2001 to 2008. The general number of RO events with strong amplitude variations can be used as an indicator of the ionospheric activity. We found that during 2001-2008 the daily globally averaged RO $S_{4a}$ index depends essentially on solar activity. The maximum occurred in January 2002, minimum has been observed in summer 2008. Different temporal behavoir of $S_{4a}$ index has been detected for polar (with latitude greater than $60^{\circ}$) and low latitude (moderate and equatorial) regions. For polar regions $S_{4a}$ index is slowly decreasing with solar activity. In the low latitude areas $S_{4a}$ index is sharply oscillating, depending on the solar ultraviolet emission variations. The different geographical behavoir of $S_{4a}$ index indicates different origin of ionospheric plasma disturbances in polar and low latitude areas. Origin of the plasma disturbances in the polar areas may be connected with influence of solar wind, the ultraviolet emission of the Sun may be the main cause of the ionospheric irregularities in the low latitude zone. Therefore, the $S_{4a}$ index of RO signal is important radio physical indicator of solar activity.

  • PDF

Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF) (고위도 하부 열권 바람의 소용돌이도와 발산 분석: 행성간 자기장(IMF)에 대한 의존도)

  • Kwak, Young-Sil;Lee, Jae-Jin;Ahn, Byung-Ho;Hwang, Jung-A;Kim, Khan-Hyuk;Cho, Kyung-Seok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM) is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ulti-mately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive $B_y$ shows positive and negative, respectively, at higher magnetic latitudes than $-70^{\circ}$. For negative $B_z$, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive $B_z$ have opposite sign. Negative IMF $B_z$ has a stronger effect on the vorticity than does positive $B_z$.

A CLUSTER SURVEY AROUND THE UNIDENTIFIED EGRET SOURCES

  • KAWASAKI WATARU;TOTANI TOMONORI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.141-144
    • /
    • 2005
  • Based on optical galaxy data, we executed a systematic search for galaxy clusters around the 15 steady unidentified EGRET GeV gamma-ray sources in high Galactic-latitude sky ([b] > $30^{\circ}$). We found a strong correlation with 3.7$\sigma$ level between close cluster pairs (merging cluster candidates) and the unidentified EGRET sources, though, in contrast, no correlation with single clusters. This result implies that merging clusters of galaxies are a possible candidate for the origin of high galactic-latitude, steady unidentified EGRET gamma-ray sources.