• Title/Summary/Keyword: Latin square

Search Result 429, Processing Time 0.029 seconds

Sarsaponin Effects on Ruminal Fermentation and Microbes, Methane Production, Digestibility and Blood Metabolites in Steers

  • Lila, Zeenat Ara;Mohammed, Nazimuddin;Kanda, Shuhei;Kurihara, Mitsunori;Itabashi, Hisao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1746-1751
    • /
    • 2005
  • The objective of this study was to evaluate the effects of sarsaponin on methane production, ruminal fermentation, nutrient digestion and blood metabolites using three Holstein steers in a 3${\times}$3 Latin Square design. The steers were fed Sudangrass hay plus concentrate mixture at a ratio 1.5:1 twice daily, and sarsaponin (0, 0.5 and 1% of DM), which was given at 09:00 and 17:00 h daily by mixing with concentrate. Rumen samples were collected 0, 2, and 5 h after morning dosing. Ruminal pH was numerically decreased and numbers of protozoa were decreased linearly (p<0.01) by treatment. Ruminal ammonia-N was reduced (linear; p<0.05) and total VFA was increased (quadratic; p<0.05) at 2 and 5 h after sarsaponin dosing. The molar proportion of acetate was decreased (quadratic; p<0.05) and propionate was increased (linear; p<0.01) at all sampling times. Blood plasma glucose was increased and urea-N was decreased (linear; p<0.05) at 2 and 5 h after dosing. Methane was decreased by approximately 12.7% (linear; p<0.05). The apparent digestibility of DM and NDF were decreased (quadratic; p<0.05) and that of CP remained unchanged due to the sarsaponin. The numbers of cellulolytic bacteria were decreased (quadratic; p<0.05), while numbers of total viable bacteria remained unchanged due to the sarsaponin. These results show that sarsaponin can partially inhibit rumen methanogenesis in vivo and improve ruminal fermentation, which supports our previous in vitro results.

Flow of Soluble Non-ammonia Nitrogen in the Liquid Phase of Digesta Entering the Omasum of Dairy Cows Given Grass Silage Based Diets

  • Choi, C.W.;Choi, C.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.10
    • /
    • pp.1460-1468
    • /
    • 2003
  • An experiment was conducted to quantify the flow of soluble non-ammonia nitrogen (SNAN) in the liquid phase of ruminal (RD) and omasal digesta (OD), and to investigate diurnal pattern in SNAN flow in OD. Five ruminally cannulated Finnish-Ayrshire dairy cows in a $5{\times}5$ Latin square design consumed a basal diet of grass silage and barley grain, and that supplemented with four protein feeds (kg/d DM basis) as follows: skimmed milk powder (2.1), wet distiller' solubles (3.0), untreated rapeseed meal (2.1) and treated rapeseed meal (2.1). Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 1.0 h interval during a 12 h feeding cycle. Both RD and OD were acidified, centrifuged to remove microbes and precipitated with trichloroacetic acid followed by centrifugation. The SNAN fractions (free amino acid (AA), peptide and soluble protein) in RD and OD were assessed using ninhydrin assay. Free AA, peptide and soluble protein averaged 60.0, 89.4 and 2.1 g/d, respectively, for RD, and 81.8, 121.5 and 2.5 g/d, respectively, for OD. Although free AA flow was relatively high, mean peptide flow was quantitatively the most important fraction of SNAN, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis. Diurnal pattern in flow of peptide including free AA in OD during a 12 h feeding cycle peaked 1 h post-feeding, decreased by 3 h post-feeding and was relatively constant thereafter. Protein supplementation showed higher flow of peptide including free AA immediately after feeding compared with no supplemented diet. There were no differences among protein supplements in diurnal pattern in flow of peptide including free AA in OD.

Effects of Supplementary Chinese Milk Vetch Silage and Rapeseed Meal on the Performance and Rumen Fermentation of Lambs Given Ammoniated Rice Straw Based Diet

  • Wu, Yueming;Liu, Jian Xin;Chen, Zhenming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.455-461
    • /
    • 1998
  • This study was proposed to investigate effects of inclusion of Chinese milk vetch silage (MVS) and rapeseed meal (RSM) on the growth and rumen fermentation of Hu-sheep. Fifty weanling lambs were randomly divided into five equal groups and offered ammoniated rice straw (ABRS) ad libitum along with 100 g concentrate (Trial 1). The animals in $T_0$, $T_1$, $T_2$, $T_3$ and $T_4$ group were respectively supplemented with MVS at levels of 0, 0, 7, 14 or 21% and with RSM at levels of 0, 15, 10, 5 or 0%. Daily gain of lambs was significantly (p<0.05) higher in $T_1$, $T_2$ and $T_3$ group than that in $T_0$ and $T_4$ group. Feed conversion ratio was greatly reduced in supplemented groups as compared with $T_0$ group. In trial 2, five sheep with rumen cannulae were used in a $5{\times}5$ Latin square design. The experimental treatments were as described in Trial 1, but without concentrate. The intake of AVRS was significantly (p<0.05) lower in $T_4$ group than that in $T_0$ group, and also significantly (p<0.05) lower than those in $T_1$ and $T_2$ group. Little difference among all treatments was found in 48h DM degradability of ABRS, MVS and RSM, and in rumen pH value and microbial protein concentration. Rumen concentrations of individual and total VFA tended to be higher in supplemented groups than those in $T_0$ group.These rusults suggest that supplementation with RSM or RSM plus MVS can effectively improve the performance of lambs, and may fail to influence markedly the rumen digestion of ABRS and rumen environments.

Effect of Potato By-products Based Silage on Rumen Fermentation, Methane Production and Nitrogen Utilization in Holstein Steers

  • Pen, B.;Iwama, T.;Ooi, M.;Saitoh, T.;Kida, K.;Iketaki, T.;Takahashi, J.;Hidari, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1283-1290
    • /
    • 2006
  • The effect of substituting potato by-products based silage (PBS) for concentrates on ruminal fermentation, methane production and nitrogen utilization in Holstein steers was evaluated. Three growing Holstein steers ($490{\pm}19kg$, initial body weight) were used in a $3{\times}3$ Latin square experiment with three experimental diets in which PBS was included at (1) 0, (2) 19 and (3) 27%, on a dry matter basis, replacing concentrates and wheat bran. Increasing replacement levels of PBS slightly increased dry matter (DM), organic matter (OM), NDF and ADF intakes by the steers (p<0.05). Inclusion of PBS at 19% increased crude protein (CP) digestibility of the experimental diets compared with the control (p<0.05). Substitution with PBS increased ADF digestibility and nitrogen retention (p<0.05), but did not affect energy retention. Energy loss as methane ranged between 5.0 and 6.1% of the total gross energy intake. There were no significant differences in carbon dioxide and methane production among all PBS levels, while daily methane production numerically increased with PBS inclusion. Substituting PBS for concentrates did not significantly affect ruminal pH and ammonia N concentration. Total VFA concentration, VFA molar proportions and blood metabolites were also unaffected by PBS replacement. These results suggest that substitution of PBS up to 27% of diet dry matter did not significantly increase methane production and was equal or superior to concentrates in ADF digestibility and nitrogen retention for growing steers.

EFFECT OF SOYBEAN EXTRUSION ON NITROGEN METABOLISM, NUTRIENT FLOW AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF LAMBS

  • Ko, J.Y.;Ha, J.K.;Lee, N.H.;Yoon, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.571-582
    • /
    • 1992
  • Soybeans were dry extruded at three different temperatures (125, 135 and $145^{\circ}C$) for 30 s. Four lambs fitted with cannulae in the rumen and abomasums were used in a balanced $4{\times}4$ Latin square design. Lambs were fed at 2 h intervals for 12 times a day with automatic feeder to maintain steady state conditions in digestive tract. A dual-phase marker system was used to estivate ruminal flow rate of both liquid and solid digesta. Objectives of this study were to determine the effect of extrusion temperature of raw soybean on the ruminal liquid and solid dilution rate, nitrogen digestion and flow at the abomasum and availability of amino acid in lambs. There were no significant effects of extrusion on liquid and solid dilution rate, and liquid volume. Ruminal liquid flow rate was not influenced by extrusion and ranged from 389 to 435 ml/hr. Extrusion had no influence on ruminal OM digestion and flow rate to the abomasums. Dietary N flow to the abomasums increased (p < 0.05) as extruding temperature increased. Extruding temperature had a significant effect (p < 0.05) on flow of N escaping ruminal degradation and ranged from 34.91 to 57.38%. Microbial N synthesized/kg OMTDR ranged from 27 to 37 g and highest with $145^{\circ}C$ ESB diet. Extrusion decreased the amount of degradable amino acid in the rumen and increased the supply of amino acid to the lower gut, especially with 135 and $145^{\circ}C$ ESB diets.

Effect of Levels of Supplementation of Concentrate Containing High Levels of Cassava Chip on Rumen Ecology, Microbial N Supply and Digestibility of Nutrients in Beef Cattle

  • Wanapat, M.;Khampa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The object of this study was to determine the influence of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial protein and digestibility of nutrients. Four, rumen fistulated crossbred beef steers with initial body weight of 400${\pm}$10 kg were randomly assigned according to a 4${\times}$4 Latin square design. The dietary treatments were concentrate cassava chip based offering at 0, 1, 2 and 3% BW with urea-treated rice straw fed ad libitum. It was found that ruminal pH was significantly decreased with increase of concentrate. Volatile fatty acids (VFA) concentration in the rumen was significantly different among treatments. In addition, a molar proportion of propionate was higher in supplemented groups at 2 and 3% BW (p<0.05), leading to significantly decreased acetate:propionate ratio. Furthermore, microbial N supply was significantly improved and was highest at 2% BW supplementation. The efficiency of rumen microbial-N synthesis based on organic matter (OM) truly digested in the rumen was highest in level of concentrate supplementation at 2% BW (80% of cassava chip in diets). Moreover, bacterial populations such as amylolytic bacteria was linearly increased, while cellulolytic bacteria was linearly decreased (p<0.01) when cattle received concentrate supplementation in all levels. The total protozoal counts were significantly increased, while fungal zoospores were dramatically decreased in cattle receiving increased levels of concentrate. In conclusion, cassava chip can be use as energy source at 80% in concentrate and supplementation of concentrate at 2% BW with urea-treated rice straw as roughage could improve rumen fermentation efficiency in beef cattle.

Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Korean Native Steers Supplemented with Soluble Proteins

  • Choi, Chang-Weon;Kim, K.H.;Chang, S.S.;Choi, N.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1269-1275
    • /
    • 2012
  • An experiment was conducted to study the effect of soluble protein supplements on concentration of soluble non-ammonia nitrogen (SNAN) in the liquid phase of ruminal (RD) and omasal digesta (OD) of Korean native steers, and to investigate diurnal pattern in SNAN concentration in RD and OD. Three ruminally cannulated Korean native steers in a $3{\times}3$ Latin square design consumed a basal diet of rice straw and corn-based concentrate (control), and that supplemented (kg/d DM basis) with intact casein (0.24; IC) or acid hydrolyzed casein (0.46; AHC). Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 2.0 h intervals after a morning feeding. The SNAN fractions (free amino acid (AA), peptide and soluble protein) in RD and OD were assessed using the ninhydrin assay. Concentrations of free AA and total SNAN in RD were significantly (p<0.05) lower than those in OD. Although free AA concentration was relatively high, mean peptide was quantitatively the most important fraction of total SNAN in both RD and OD, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis of Korean native steers. Diurnal variation in peptide concentration in OD for the soluble protein supplemented diets during the feeding cycle peaked 2 h post-feeding and decreased thereafter whereas that for the control was relatively constant during the entire feeding cycle. Diurnal variation in peptide concentration was rather similar between RD and OD.

The Effects of Additives in Napier Grass Silages on Chemical Composition, Feed Intake, Nutrient Digestibility and Rumen Fermentation

  • Bureenok, Smerjai;Yuangklang, Chalermpon;Vasupen, Kraisit;Schonewille, J. Thomas;Kawamoto, Yasuhiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1248-1254
    • /
    • 2012
  • The effect of silage additives on ensiling characteristics and nutritive value of Napier grass (Pennisetum purpureum) silages was studied. Napier grass silages were made with no additive, fermented juice of epiphytic lactic acid bacteria (FJLB), molasses or cassava meal. The ensiling characteristics were determined by ensiling Napier grass silages in airtight plastic pouches for 2, 4, 7, 14, 21 and 45 d. The effect of Napier grass silages treated with these additives on voluntary feed intake, digestibility, rumen fermentation and microbial rumen fermentation was determined in 4 fistulated cows using $4{\times}4$ Latin square design. The pH value of the treated silages rapidly decreased, and reached to the lowest value within 7 d of the start of fermentation, as compared to the control. Lactic acid content of silages treated with FJLB was stable at 14 d of fermentation and constant until 45 d of ensiling. At 45 d of ensiling, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of silage treated with cassava meal were significantly lower (p<0.05) than the others. In the feeding trial, the intake of silage increased (p<0.05) in the cow fed with the treated silage. Among the treatments, dry matter intake was the lowest in the silage treated with cassava meal. The organic matter, crude protein and NDF digestibility of the silage treated with molasses was higher than the silage without additive and the silage treated with FJLB. The rumen parameters: ruminal pH, ammonia-nitrogen ($NH_3$-N), volatile fatty acid (VFA), blood urea nitrogen (BUN) and bacterial populations were not significantly different among the treatments. In conclusion, these studies confirmed that the applying of molasses improved fermentative quality, feed intake and digestibility of Napier grass.

Evaluation of Energy Digestibility and Prediction of Digestible and Metabolizable Energy from Chemical Composition of Different Cottonseed Meal Sources Fed to Growing Pigs

  • Li, J.T.;Li, D.F.;Zang, J.J.;Yang, W.J.;Zhang, W.J.;Zhang, L.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1430-1438
    • /
    • 2012
  • The present experiment was conducted to determine the digestible energy (DE), metabolizable energy (ME) content, and the apparent total tract digestibility (ATTD) of energy in growing pigs fed diets containing one of ten cottonseed meals (CSM) collected from different provinces of China and to develop in vitro prediction equations for DE and ME content from chemical composition of the CSM samples. Twelve growing barrows with an initial body weight of $35.2{\pm}1.7$ kg were allotted to two $6{\times}6$ Latin square designs, with six barrows and six periods and six diets for each. A corn-dehulled soybean meal diet was used as the basal diet, and the other ten diets were formulated with corn, dehulled soybean meal and 19.20% CSM. The DE, ME and ATTD of gross energy among different CSM sources varied largely and ranged from 1,856 to 2,730 kcal/kg dry matter (DM), 1,778 to 2,534 kcal/kg DM, and 42.08 to 60.47%, respectively. Several chemical parameters were identified to predict the DE and ME values of CSM, and the accuracy of prediction models were also tested. The best fit equations were: DE, kcal/kg DM = 670.14+31.12 CP+659.15 EE with $R^2$ = 0.82, RSD = 172.02, p<0.05; and ME, kcal/kg DM = 843.98+25.03 CP+673.97 EE with $R^2$ = 0.84, RSD = 144.79, p<0.05. These results indicate that DE, ME values and ATTD of gross energy varied substantially among different CSM sources, and that some prediction equations can be applied to predict DE and ME in CSM with an acceptable accuracy.

Effects of Forage Sources on Rumen Fermentation Characteristics, Performance, and Microbial Protein Synthesis in Midlactation Cows

  • Xua, Jun;Houa, Yujie;Yang, Hongbo;Shi, Renhuang;Wu, Caixia;Huo, Yongjiu;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.5
    • /
    • pp.667-673
    • /
    • 2014
  • Eight multiparous Holstein cows ($632{\pm}12$ kg BW; $135{\pm}16$ DIM) were used in a replicated $4{\times}4$ Latin square design to evaluate the effects of forage sources on rumen fermentation characteristics, performance, and microbial protein (MCP) synthesis. The forage portion of the diets contained alfalfa hay (AH), oat hay (OH), Leymus chinensis (LC), or rice straw (RS) as the primary source of fiber. Diets were isonitrogenous and isocaloric, and cows were fed four corn silages based total mixed rations with equivalent nonfiber carbohydrate (NFC) and forage neutral detergent fiber (NDF). Dry matter intake was not affected by the source of dietary forages, ranging from 18.83 to 19.20 kg/d, consequently, milk yield was similar among diets. Because of the numerical differences in milk fat and milk protein concentrations, 4% FCM and ECM yields were unchanged (p>0.05). Mean rumen pH, NH3-N content, and concentrations of volatile fatty acids in the rumen fluid were not affected by the treatments (p>0.05). Dietary treatments did not affect the total tract apparent digestibility of dry matter, organic matter, and crude protein (p>0.05); however, digestibility of NDF and acid detergent fiber in RS diet was higher compared with AH, OH, and LC diets (p<0.05). Total purine derivative excretion was higher in cows fed AH, OH, and LC diets compared with those fed RS diet (p<0.05), consequently, estimated MCP synthesis was 124.35 g/d higher in cows fed AH diet compared with those fed RS diet (p<0.05). The results indicated that cows fed AH, OH, LC, and RS diets with an equivalent forage NDF and NFC have no unfavourable effect on the ruminal fermentation and productive parameters.