• 제목/요약/키워드: Lath marteniste

검색결과 2건 처리시간 0.014초

Ti-Nb첨가 저합금강 용접열영향부에서의 열-응력 이력이 미세조직 및 기계적 성질에 미치는 영향에 관한 연구 (Microstructure Evolution and Its Effect on Strength during Thermo-mechanical Cycling in the Weld Coarse-grained Heat-affected Zone of Ti-Nb Added HSLA Steel)

  • 문준오;이창희
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.44-49
    • /
    • 2013
  • The influence of thermo-mechanical cycling on the microstructure and strength in the weld coarse-grained heat affected zone (CGHAZ) of Ti-Nb added low carbon HSLA steel was explored through Vickers hardness tests, nanoindentation experiments, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Undeformed and deformed CGHAZs were simulated using Gleeble simulator with different heat inputs of 30kJ/cm and 300kJ/cm. At high heat input of 300kJ/cm, the CGHAZ consisted of ferrite and pearlite and then their grain sizes were not affected by deformation. At low heat input of 30kJ/cm, the CGHAZ consisted of lath martensite and then the sizes of prior austenite grain, packet and lath width decreased with deformation. In addition, the fraction of particle increased with deformation and this is because the precipitation kinetics was accelerated by deformation. Meanwhile, the Vickers and nanoindentation hardness of deformed CGHAZ with 30kJ/cm heat input were higher than those of undeformed CGHAZ, which are due to the effect of grain refinement and precipitation strengthening.

TMCP로 제조된 고강도 베이나이트강의 유효결정립도와 저온인성에 미치는 Cu와 B의 영향 (Effects of Cu and B on Effective Grain Size and Low-Temperature Toughness of Thermo-Mechanically Processed High-Strength Bainitic Steels)

  • 이승용;황병철
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.520-525
    • /
    • 2014
  • Effects of Cu and B on effective grain size and low-temperature toughness of thermo-mechanically processed high-strength bainitic steels were investigated in this study. The microstructure of the steel specimens was analyzed using optical, scanning, and transmission electron microscopy; their effective grain size was also characterized by electron back-scattered diffraction. To evaluate the strength and low-temperature toughness, tensile and Charpy impact tests were carried out. The specimens were composed of various low-temperature transformation products such as granular bainite (GB), degenerated upper bainite (DUB), lower bainite (LB), and lath marteniste (LM), dependent on the addition of Cu and B. The addition of Cu slightly increased the yield and tensile strength, but substantially deteriorated the low-temperature toughness because of the higher volume fraction of DUB with a large effective grain size. The specimen containing both Cu and B had the highest strength, but showed worse low-temperature toughness of higher ductile-brittle transition temperature (DBTT) and lower absorbed energy because it mostly consisted of LB and LM. In the B-added specimen, on the other hand, it was possible to obtain the best combination of high strength and good low-temperature toughness by decreasing the overall effective grain size via the appropriate formation of different low-temperature transformation products containing GB, DUB, and LB/LM.