• Title/Summary/Keyword: Lateral velocity

Search Result 461, Processing Time 0.046 seconds

The Characteristics of Sediment and a Design Method for Preventing Sediment in the beginning Lateral Sewer (단말 오수관거 에서의 퇴적특성과 퇴적방지를 위한 설계법 고찰)

  • Hwang, Hwan Kook;Kim, Young Jin;Han, Sang Jong;Jung, Ho Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.789-797
    • /
    • 2009
  • The flow in the beginning lateral sewer can be characterized as intermittent and unsteady, and a moment maximum flow energy is required to transport fecal solids in the sewer. It is thus difficult to design to satisfy a minimum velocity criteria (0.6m/s), because of the substantially lower discharge in the beginning lateral sewer. This study is the result of a field survey, and aims to determine a design criteria for the minimum slope to prevent sediment in a lateral sewer. The survey performed on the two flat small catchments in Goyang-si consisting of D400mm hume-pipe, aimed to understand the manner in which the scope of a sewer slope has an effect on sediment in the beginning lateral sewer. The survey showed that the sewer slope below 3‰ had sedimentation of 88.7%, while the sewer slope of 3~6‰ had sedimentation of 47.8%. In addition, the minimum design slope was estimated to refer to the result of hydraulic experiments from Public Works Research Institute in Japan. Analysis showed that the D400mm hume pipe should be installed with a slope of 6.5‰ to prevent sediment in the beginning lateral sewer. For future installations, the study results showed that a D300mm plastic pipe requires a minimum slope of 3.5‰, and a D250mm plastic pipe requires a minimum slope of 3.3‰ in the beginning lateral sewer.

An Experimental Study on Damage Mechanism of Glass Resulting Frojm Particle Impact (입자충격에 의한 유리의 손상기구에 관한 실험적 연구)

  • Seo, Chang-Min;Sin, Hyeong-Seop;Hwang, Byeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1903-1912
    • /
    • 1996
  • A quantitative study of impact damage of a soda-lime glass was carried out. An initiation and a propagation of cracks by the impact of two inds of steel ball was investigated. The fron, side and rear view of cracks were observed by a stereo-microscope. And the lowering of the benidng strength due to the impact of steel balls was examined through the 4-point bending test. A transparent glass is very helpful to understand and analyze the impact damage behavior of another brittle matereial. A deagdram about crack patterns according to the threshold impact velocity was sketched. A ring crack and a cone crack were formed at the low impact velocity. And as the impact velocity was higher, initial lateral crack was generated on the slanting surface of cone crack, and radial cracks were generated from the outermost ring crack. When the impact velocity of steel balls exceed a critical velocity, the contact site of specimens were crushed. According to the propagation of a cone crack, a rapid strength degradation occurred. In the specimen having crushed region, a bending strength was converged to a constant value instead of strength degradation.

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

Sensitivity analysis of skull fracture

  • Vicini, Anthony;Goswami, Tarun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • Results from multiple high profile experiments on the parameters influencing the impacts that cause skull fractures to the frontal, temporal, and parietal bones were gathered and analyzed. The location of the impact as a binary function of frontal or lateral strike, the velocity, the striking area of the impactor, and the force needed to cause skull fracture in each experiment were subjected to statistical analysis using the JMP statistical software pack. A novel neural network model predicting skull fracture threshold was developed with a high statistical correlation ($R^2=0.978$) and presented in this text. Despite variation within individual studies, the equation herein proposes a 3 kN greater resistance to fracture for the frontal bone when compared to the temporoparietal bones. Additionally, impacts with low velocities (<4.1 m/s) were more prone to cause fracture in the lateral regions of the skull when compared to similar velocity frontal impacts. Conversely, higher velocity impacts (>4.1 m/s) showed a greater frontal sensitivity.

Analysis of Comfort on Transition Curve based on the Measured Data (실측데이터에 의한 완화곡선 승차감 평가)

  • Choi, Il-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3573-3578
    • /
    • 2015
  • Transition curves are located between curve and straight section in railway. These transition curves are vulnerable to the ride comfort of passengers and safety of a vehicle because lateral acceleration, lateral jerk and roll velocity increase as curvature and cant change along the transition curves. In this paper, ride comfort on the transition curve was calculated on the basis of lateral acceleration and roll velocity measurements. The evaluation of ride comfort was conducted according to the methodology specified in European Standard. The distribution characteristics of the comfort index were investigated for the korean conventional line from the evaluation results. The influence of the curve radius and the vehicle speed on the ride comfort index was also investigated. Finally, the relationship between ride comfort and the rate of cant changes on transition curves was analyzed.

Classification of metals inducing filed aided lateral crystallization (FALC) of amorphous silicon

  • Jae-Bok Lee;Se-Youl Kwon;Duck-Kyun Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.160-165
    • /
    • 2001
  • The effects of various metals on Field Aided Lateral Crystallization (FALC) behaviors of amorphous silicon (a-Si) were investigated. Under an influence of electric field, metals such s Cu, Ni and Co were found to fasten the lateral crystallization toward a metal-free region, exhibiting a typical FALC behavior while the lateral crystallization of a-Si was not obvious for Pd. However, Au, Al and Cr did not induce the lateral crystallization of a-Si in metal-free region. Such phenomenological differences in various metals were studied in terms of dominant diffusing species (DDS) in the reaction between metal and Si. It was judged that the applied electric field enhanced the crystallization velocity by accelerating the diffusion of metal atoms since the occurrence of lateral crystallization would be strongly dependent on the diffusion of metal atoms than that of Si atoms. Therefore, it was concluded that he only metal-dominant diffusing species in the reaction between metal and Si results in the crystallization of a-Si in metal-free region.

  • PDF

The effect of lateral wedge on postural sway in Parkinson's disease

  • Yoon, Ji-Yeon;Park, Jinse;Park, Kang Min;Ha, Sam Yeol;Kim, Sung Eun;Shin, Kyong Jin;Kim, Si Eun;Jo, Geunyeol
    • Annals of Clinical Neurophysiology
    • /
    • v.20 no.1
    • /
    • pp.31-35
    • /
    • 2018
  • Background: Although postural instability is one of the major symptoms of Parkinson's disease (PD), dopaminergic treatment is ineffective for treating postural instability. Recent reports have shown that somatosensory deficit is associated with postural instability, and that somatosensory input improved postural instability. The purpose of this study is to evaluate the effects of lateral wedges for quiet standing postural control in people with PD. Methods: Twenty-two patients who were diagnosed with PD were enrolled in this study. The participants stood on a force plate under two conditions (wedge and no wedge) with or without having their eyes open or closed. The center of pressure (COP) range and velocity were analyzed using a two-way repeated-measures analysis of variance. Results: The range and velocity of COP in the anterioposterior and mediolateral (ML) directions were significantly improved after the patients stood on the lateral wedge with their eyes closed (p < 0.05). The range in ML direction and velocity in both directions of COP were significantly decreased when their eyes were open (p < 0.05). Conclusions: Regardless of vision, standing on lateral wedges improved postural sway in people with PD.

On the Manoeuvring Motion Considering the Interaction Forces in Confined Waters

  • Lee, Chun-Ki;Kang, Il-Kwon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.639-643
    • /
    • 2003
  • The emphasis is put on the detailed knowledge on manoeuvring characteristic for the safe navigation while avoiding terrible collision between ships and on the guideline to the design and operation of the ship-waterway system The numerical simulation of manoeuvring motion was carried out parametrically for different ship types, ship-velocity ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference (hereafter, $U_2$/$U_1$ ) between two ships were considered as 0.6, 1.2, 1.5. From the inspection of this investigation, it indicates the following result. Considering the interaction force only as parameter, the lateral distance between ships is necessarily required for the ship-velocity ratio of 1.2, compared to the cases of 0.6 and 1.5 regardless of the ship types. Furthermore, regardless of the ship-velocity ratio, an overtaking and overtaken vessel can be manoeuvred safely without deviating from the original course under the following conditions: the lateral distance between two vessels is approximately kept at 0.5 times of ship-length and 5 through 10. degrees of range in maximum rudder angle. The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.

The Behavior of Sheet Piling Walls supported by Anchors in Soft Ground (연약지반에 설치된 앵커지지 강널말뚝 흙막이벽의 거동)

  • 홍원표;송영석;김동욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.65-74
    • /
    • 2004
  • Based on the field measuring data obtained from seven excavation sections in Inchon International Airport Project, the horizontal displacement of sheet piling walls supported by anchors and the lateral earth pressure acting on sheet piling walls was investigated in soft ground. The proposed diagram of lateral earth pressure is a rectangular form, and the maximum earth pressure corresponds to $0.6\gamma H$. The maximum earth pressure is similar to the empirical earth pressure proposed by NAVFAC(1982). The quantitative safe criterion of sheet piling walls with struts is established from the relationships between increasing velocity of maximum horizontal displacement and stability number in excavated ground. If the velocity of maximum horizontal displacement shows lower than 1mm per day, the sheet piling walls exist under stable state. When the velocity of maximum horizontal displacement becomes more than 1mm and less than 2mm per day, excavation works should be observed with caution. Also, when the velocity of maximum horizontal displacement becomes more than 2mm per day, appropriate remediations and reinforcements are applied to sheet piling walls.

Stream Flow Analysis of Dry Stream on Flood Runoff in Islands (도서지역 건천의 홍수유출 시 흐름 해석)

  • Yang, Won-Seok;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.571-580
    • /
    • 2013
  • In this study, compared with the result of water surface elevation and water velocity on the establishment of river maintenance basic plan and result of HEC-GeoRAS based GIS, and after use the result of water surface elevation and velocity were observed in the Han stream on Jeju island, analysis 2 dimensional stream flow. the lateral hydraulic characteristics and curved channel of the stream were analyzed by applying SMS-RMA2 a 2 dimensional model. The results of the analysis using HEC-RAS model and HEC-GeoRAS model indicated that the distribution ranges of water surface elevation and water velocity were similar, but the water surface elevation by section showed a difference of 0.7~2.18 EL.m and 0.63~1.16 EL.m respectively, and water velocity also showed differences of maximum 1.58m/sec and 2.67m/sec. SMS-RMA2 analysis was done with the sphere of Muifa the typhoon as a boundary condition, and as a result, water velocity distribution was found to be 1.19 through 3.91 m/sec, and the difference of lateral water velocity in No. 97 through 99 the curved channel of the stream was analyzed to be 1.59 through 2.36 m/sec. In conclusion it is anticipated that the flow analysis of 2 dimension model of stream can reflect the hydraulic characteristics of the stream curved channel or width and shape, and can be applied effectively in the establishment of river maintenance basic plan or management and designing of stream.