• Title/Summary/Keyword: Lateral pressure

Search Result 909, Processing Time 0.032 seconds

Analysis of Lateral Earth Pressures on Retaining Wall from Traffic Load Distribution (옹벽 상단 교통하중의 분포에 따른 옹벽의 수평 토압 분석)

  • Lee, Kicheol;Kim, Dongwook;Chung, Moon-Kyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.43-55
    • /
    • 2017
  • The purpose of this study is to investigate the effect of traffic loads on retaining wall stability. There is insufficient research on lateral earth pressure on retaining wall due to traffic load. In addition, limited detailed designs of retaining wall for transportation including number of lanes of road, magnitudes of axle loads, and vehicle formations are available. Because the lateral earth pressure on the retaining wall due to traffic loads is a function of the lateral distance from retaining wall, the wall height, and the locations of lanes, the analysis of lateral load on retaining wall from traffic loads is performed with direct or indirect reflection of these factors. As a result of the analysis, lateral earth loads induced from traffics can be considered negligible if the lateral distance of traffic load from wall exceeds the height of retaining wall. Therefore, it is practically reasonable to consider traffic loads within a lateral distance between wall and traffic load of the height of retaining wall.

Socket Pressure Distribution of the Uni-Lateral Trans-Femoral Amputee with a Suction Socket (흡착식 소켓을 착용한 일측 대퇴절단환자의 소켓내부압력분포)

  • Jang, Yun-Hui;Yang, Gil-Tae;Im, Song-Hak;Mun, Mu-Seong;Kim, Yeong-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.417-422
    • /
    • 1998
  • The study was explored socket pressure distributions on a trans-femoral amputee with a suction socket in static and dynamic situations. Even when the amputee stood in the anatomically neutral position, significant pressure concentrations were observed in the lateral, medial, and posterior planes of the socket. During free level walking, a significant shifting pattern of pressure concentration areas was observed. High socket pressure was observed in the lateral, medial-anterior and posterior walls during mid-stance or push-off period. Socket pressure measurement will be one of the good tool to determine the optimal socket-limb interface.

  • PDF

Axial Collapse Behaviour of Ship's Stiffened Panels considering Lateral Pressure Load (횡하중을 고려한 선체보강판넬의 압축 붕괴거동에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.235-245
    • /
    • 2007
  • Stiffened steel plates are basic structural members on the deck and bottom structure in ship, offshore. It has a number of one sided stiffeners in either one or both directions, the latter structure was called grillage structure. At the ship structural desgn stage, one of the major consideration is evaluation for ultimate strength of the hull girder. In general, it is accepted that hull girder strength can be represented by the local strength of the longitudinal stiffened panel. In case of considering hogging condition in a stormy sea, stiffened panel was acting on the bottom structure under axial compressive load induced hull girder bending moment, also simultaneously arising local bending moment induced lateral pressure load. In this paper, results of the structural analysis have been compared with another detailed FEA program and prediction from design guideline and a series analysis was conducted consideration of changing parameters for instance, analysis range, cross-section of stiffener, web height and amplitude of lateral pressure load subjected to combined load (axial compression and lateral pressure load). It has been found that finite element modeling is capable of predicting the behaviour and ultimate load capacity of a simply supported stiffened plate subjected to combined load of axial compression and lateral pressure load It is expected that these results will be used to examine the effect of interaction between lateral pressure and axial loads for the ultimate load-carrying capacity based on the Ultimate Limit State design guideline.

Analytical Solution for the Ultimate Strength of Sandwich Panels under In-plane Compression and Lateral Pressure (조합 하중을 받은 샌드위치 패널의 최종강도 설계식 개발)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.535-546
    • /
    • 2019
  • The paper presents a closed-form analytical solution for the ultimate strength of sandwich panels with metal faces and an elastic isotropic core during combined in-plane compression and lateral pressure under clamped boundary condition. By using the principle of minimum potential energy, the stress distribution in the faces during uni-axial edge compression and constant lateral pressure was obtained. Then, the ultimate edge compression was derived on the basis that collapse occurs when yield has spread from the mid-length of the sides of the face plates to the center of the convex face plates. The results were validated by nonlinear finite element analysis. Because the solution is analytical and closed-form, it is rapid and efficient and is well-suited for use in practical structural design methods, including repetitive use in structural optimization. The solution applies for any elastic isotropic core material, but the application that stimulated this study was an elastomer-cored steel sandwich panel that had excellent energy absorbing and protective properties against fire, collisions, ballistic projectiles, and explosions.

Numerical Analysis of Utility Tunnel Movement under Reclamation Ground (매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석)

  • Yoon, Woo Hyun;Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.

Behavior Analysis of Earth Retaining Walls on the Excavation for Contact Structure (인접 구조물의 터파기로 인한 흙막이 벽체의 거동 분석)

  • Kim, Young-Muk;Jung, Young-Soo;Hong, Chang-Pyo;Shin, Youn-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1496-1503
    • /
    • 2005
  • The study on the lateral earth pressure is briskly preformed for various conditions such as type of retaining walls, ground condition, and type of supporting systems. It is not simple to determine the distribution of lateral earth pressure accurately, however, because the lateral earth pressure is affected by various factors. This study is performed to analyze the behavior of earth retaining walls for new excavation contacting with existing excavation by comparing with the site measuring values before and after new excavation. On the base of observation, the distribution of strut axial forces is similar to that of ganeral earth retaining walls, but strut axial forces is increased by removal of existing earth anchors. When new excavation is performed contacting with existing excavation, the axial force of strut is decreased because of soil exclusion in the behind walls, but that force is increased after new exeavation. The analysis result show that the installation of strut in middle part makes a effect to not only 1 adjacent strut, but 3-5 adjacent struts. Also during new excavation strut axial forces is decreased by relaxation of total earth retaining wall system.

  • PDF

Development of Doubler Plate Design System for Ship Structure Subjected to In-plane Combined Loads and Lateral Pressure (면내조합하중과 횡압 하의 선박 이중판 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.146-152
    • /
    • 2019
  • A design system was developed for the doubler plate of a ship structure simultaneously subjected to in-plane loads and lateral pressure based on general dimensions and those of a representative ship structure. An equivalent design equation that considers various structural design parameters was derived by introducing the equivalent plate thickness theory, and the design of the doubler plate reinforcement of the ship structure was developed. A hybrid structural design system was established for a doubler plate simultaneously subjected to in-plane loads and lateral pressure consisting of two modules: an optimized design module and a double plate strength & design review module. The practical application of this design system was illustrated to show its usability. It was found that the design safety of the doubler plate was ensured, and this system could be used as an initial design guide to review the double plate reinforcement for a dent or corrosion of the ship plate members. Using the developed design system would make it possible to obtain a more reasonable doubler plate structure that considers the rational reinforcement of plate members of ship structures. In addition, a more reliable structural analysis using a strength evaluation process can be performed to verify the efficiency of the optimum structural design for the doubler plate structure.

The Change of Lateral Shift of Center of Pressure according to the Gait Improvement in Post-Stroke Hemiplegic Patients (뇌졸중 후 편마비 환자의 보행능력 향상에 따른 질량중심 좌우이동의 변화)

  • Lee, Il-Suk;Park, Kee-Eon;Hong, Hae-Jin;Sung, Kang-Keyng;Lee, Sang-Kwan
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.448-454
    • /
    • 2014
  • Objectives: The aim of this study was to analyze the change of lateral shift of Center of Pressure (CoP) according to the gait improvement in post-stroke hemiplegic patients and to investigate relationship between the change of motor grade and lateral shift of CoP. Methods: We measured the lateral shift of CoP and motor grade of eight post-stroke hemiplegic patients at the beginning of dependent gait and independent gait. Results: We found that CoP tended to be shifted to the non-affected side when patients started to walk independently. Furthermore, there was no relationship between the change of motor grade and lateral shift of CoP. Conclusions: This result may suggest it is more important to control the non-affected side than the affected side, at least until the beginning independent gait.

A Study of Lateral Force Fluctuations in Over-Expanded Nozzle Flow (과팽창 노즐 유동에서 발생하는 측력변동에 관한 연구)

  • Lee, Jong-Sung;Cha, Yong-Su;Vincent, Lijo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.253-256
    • /
    • 2009
  • In the present paper, experimental and numerical fundamental analyses of the occurrence of lateral force in overexpanded thrust nozzle were carried out. Investigation of the lateral force fluctuations in an thrust nozzle for the shutdown transient was presented. Wall pressure distribution and Schlieren Photographs as NPR were presented. Pressure peak is observed during transition of RSS to FSS.

  • PDF

Effects of Combined Wedge on Angle and Moment of Ankle and Knee Joint During Gait in Patients With Genu Varus

  • Yang, Hae Sun;Choi, Houng Sik
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1025-1030
    • /
    • 2016
  • The purpose of this study was to investigate the effects of combined wedge on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion of foot for genu varus among adult men during gait. This study was carried out with 10 adult men for genu varus in a motion analysis laboratory in J university. The subjects of the experiment were measured above 5cm width between the knees on contact of both medial malleolus of ankle while standing. The width of their knees in neutral position was measured without the inversion or eversion of the subtalar joint by the investigator. The subjects of the experiment were ten who were conducted randomly for standard insole, insole with $10^{\circ}$ lateral on rear foot wedge, insole at $10^{\circ}$lateral on rear foot and $5^{\circ}$ medial on fore foot wedge. Before and after intervention, changes on the range of motion in ankle and knee joint, ankle eversion moment and knee adduction moment, and center of pressure excursion were measured. In order to compare analyses among groups; repeated one-way ANOVA and $Scheff{\acute{e}}$ post hoc test were used. As a result, combined wedge group was significantly decreased compared to control wedge group in terms of knee varus angle in mid-stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of ankle eversion moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge group in terms of knee adduction moment in whole stance(p<.05). Combined wedge group was significantly decreased compared to lateral wedge in terms of center of pressure excursion in whole stance(p<.05). The results of this study suggest that combined wedge for genu varus decreased ankle eversion moment and knee adduction moment upon center of pressure excursion. We hypothesize that combined wedge may also be effective in the protection excessive ankle pronation.