• 제목/요약/키워드: Lateral load-deflection

검색결과 116건 처리시간 0.026초

Optimization study on roof break direction of gob-side entry retaining by roof break and filling in thick-layer soft rock layer

  • Yang, Dang-Wei;Ma, Zhan-Guo;Qi, Fu-Zhou;Gong, Peng;Liu, Dao-Ping;Zhao, Guo-Zhen;Zhang, Ray Ruichong
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.195-215
    • /
    • 2017
  • This paper proposes gob-side entry retaining by roof break and filling in thick-layer soft rock conditions based on the thick-layer soft rock roof strata migration law and the demand for non-pillar gob-side entry retaining projects. The functional expressions of main roof subsidence are derived for three break roof direction conditions: lateral deflection toward the roadway, lateral deflection toward the gob and vertically to the roof. These are derived according to the load-bearing boundary conditions of the main roadway roof stratum. It is concluded that the break roof angle is an important factor influencing the stability of gob-side entry retaining surrounding rock. This paper studies the stress distribution characteristics and plastic damage scope of gob-side entry retaining integrated coal seams, as well as the roof strata migration law and the supporting stability of caving structure filled on the break roof layer at the break roof angles of $-5^{\circ}$, $0^{\circ}$, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$ are studied. The simulation results of numerical analysis indicate that, the stress concentration and plastic damage scope to the sides of gob-side entry retaining integrated coal at the break roof angle of $5^{\circ}$ are reduced and shearing stress concentration of the caving filling body has been eliminated. The disturbance of coal mining to the roadway roof and loss of carrying capacity are mitigated. Field tests have been carried out on air-return roadway 5203 with the break roof angle of $5^{\circ}$. The monitoring indicates that the break roof filling section and compaction section are located at 0-45 m and 45-75 m behind the working face, respectively. The section from 75-100 m tends to be stable.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석 (Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil)

  • 장화섭;김호선;곽연민;박재현
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.421-430
    • /
    • 2013
  • 수평하중이 지배적인 해상 풍력발전기 설계 시에는 지반-기초구조물 거동을 정확히 모사하여야 상부구조물에 대한 정확한 거동예측이 가능하며, 합리적 설계가 이루어질 수 있다. 현재 다양한 지반 모델링 기법이 존재하나, 모노파일 기초 설계 시, 각 해석 기법에 대한 충분한 검증 절차 없이 해석 결과를 그대로 사용할 경우 구조물을 과다 및 과소하게 설계할 우려가 있다. 이에 본 연구에서는 지반 모델링 기법 차에 따른 모노파일의 부재력 및 수평변위 차를 비교 분석하였다. 검토 결과 고정단 모델은 최대 수평변위를 과소평가 하여 사용성 검토 측면에서 적합하지 않은 것으로 나타났으며, 고정단 모델, 지반강성행렬 모델은 모노파일의 부재력을 과소평가하는 것으로 나타났다. 반면 가상고정점 모델은 모노파일의 부재력을 과대평가하여 경제성 측면에서 적합하지 않은 것으로 나타났다. 지반반력계수 모델과 p-y곡선 모델의 경우 3D 지반 모델링 해석 결과와 비교적 유사한 수평변위 및 부재력을 나타냈으며, 지반을 2D로 모델링한 경우 타 모델링 기법에 비해 과대한 수평변위와 부재력을 산정했다.

선박 판부재의 개선된 좌굴평가 시스템의 개발 (The Development of Advanced Buckling Strength Estimation System)

  • 함주혁;김을년
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.53-60
    • /
    • 1997
  • 일반적으로 선박 판부재의 좌굴강도에 대한 안전성 평가는 선체구조 설계단계에서 반드시 거쳐야 할 단계로 한 척의 배는 수많은 판부재로 구성되어 선박구조 전체에 대한 이론적이며 체계적인 시스템을 이용한 좌골강도평가의 정확도 및 효율성이 강조되고 있다. 그러나 현재의 판부재 좌굴강도를 평가하는 각 선급의 규정치가 많은 영향인자를 고려치 않고 있거나 함축척으로 고려하고 있기 때문에 경우에 따라서는 좌굴강도가 상당한 안전측의 값을 제시하는 등 실제 선급규정치의 사용에 제약을 주기도 한다. 따라서 본 연구에서는 면내인장력의 영향등 선급들의 좌굴 규정치뿐만이 아니라 면내인장력의 효과, 경계조건, 횡하중 및 잔류응력등을 고려하면서 손쉽게 좌굴평가를 수행할 수 있는 선진 좌굴평가시스템을 개발하였다. 이들 선진 좌굴평가시스템을 이용하면 선박판부재의 보다 정도 높고 효율적인 평가가 가능하리라 생각되며 앞으로 대중적인 사용을 위해 워크스테이션 외에도 개인용 컴퓨터에서의 시스템 구축을 계획하고 있다.

  • PDF

초고층건물의 통합설계시스템에서 개념구조설계법 개발 (Conceptual Structural Design Method in Integrated Design System for Tall Buildings)

  • 송화철;조용수
    • 한국공간구조학회논문집
    • /
    • 제5권3호
    • /
    • pp.75-82
    • /
    • 2005
  • 초고층건물 구조설계를 효율적으로 수행하고 설계정보를 합리적으로 처리하기 위해서 통합설계에 대한 필요성이 증가하고 있으며, 또한 기존의 설계사례를 D/B화하여 초기 설계단계에 적용하는 연구가 필요하다. 구조설계 초기 단계에서는 주재료와 구조형태를 선정하고 대략적인 부재치수를 선정하게 되는데, 이것은 건물높이, 사용하중, 기본풍속, 설계가속도, 최대수평변위, 기둥간격, 층고 등과 같은 정보와 유사 사례에 대한 정보를 토대로 결정하게 된다. 그리고 초기 개념설계 단계에서 주어진 문제를 해결하는 방법은 과거 유사한 문제의 해결지식이 유용하게 적용된다. 본 논문에서는 초고층건물의 통합설계시스템에서의 개념구조설계법을 소개하고, 초기 설계단계에서의 적합성을 초고층건물 적용 예제를 이용하여 검토하고자 한다.

  • PDF

Statistical calibration of safety factors for flexural stiffness of composite columns

  • Aslani, Farhad;Lloyd, Ryan;Uy, Brian;Kang, Won-Hee;Hicks, Stephen
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.127-145
    • /
    • 2016
  • Composite column design is strongly influenced by the computation of the critical buckling load, which is very sensitive to the effective flexural stiffness (EI) of the column. Because of this, the behaviour of a composite column under lateral loading and its response to deflection is largely determined by the EI of the member. Thus, prediction models used for composite member design should accurately mirror this behaviour. However, EI varies due to several design parameters, and the implementation of high-strength materials, which are not considered by the current composite design codes of practice. The reliability of the design methods from six codes of practice (i.e., AS 5100, AS/NZS 2327, Eurocode 4, AISC 2010, ACI 318, and AIJ) for composite columns is studied in this paper. Also, the reliability of these codes of practice against a serviceability limit state criterion are estimated based on the combined use of the test-based statistical procedure proposed by Johnson and Huang (1997) and Monte Carlo simulations. The composite columns database includes 100 tests of circular concrete-filled tubes, rectangular concrete-filled tubes, and concrete-encased steel composite columns. A summary of the reliability analysis procedure and the evaluated reliability indices are provided. The reasons for the reliability analysis results are discussed to provide useful insight and supporting information for a possible revision of available codes of practice.

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.