• Title/Summary/Keyword: Lateral load resisting system

Search Result 81, Processing Time 0.026 seconds

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

Structural Performance of Shearwall with Sectional Shape in Wall-type Apartment Buildings (단면현상에 따른 벽식구조 전단벽의 구조성능 평가)

  • 한상환;오영훈;오창학;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.3-14
    • /
    • 2000
  • Structural performance of the walls subjected to lateral load reversals depends on various parameters such as loading history, sectional shape, reinforcement, lateral confinement, aspect ratio, axial compression, etc. Thus, the performance of the shearwall for wall-type apartment should be evaluated properly considering above parameters. This study investigates the effect of sectional shape on the structural performance of the wall. Sectional shape of the specimen is rectangular, barbell and T. Based on this experimental results, all specimens behaved as ductile fashion and failed by concrete crushing of the compression zone. Deformation index of those specimens evaluated better than 3 of ductility ratio, and 1.5% of deformability specified by seismic provision. Moreover, the performance of the rectangular shaped specimen, whose compression zone was confined with U-bar and cross tie, was as good as the barbell shaped specimen. Therefore, if we considered construction practice such as workmanship and detailing, shearwall with rectangular section may be more economical lateral load resisting system.

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

An Evaluation for Progressive Collapse Resisting Capacity of a 80F RC Flat Plate for Sustainable Super Tall Building (지속가능한 초고층 건물을 위한 80층 RC 플랫 플레이트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung Woo
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.151-157
    • /
    • 2010
  • This study is connected with evaluation of the progressive collapse resisting capacity for sustainable RC super tall building design. As the progressive collapse is not considered in current design codes in Korea, differences between linear static and dynamic analysis based on the GSA guidelines was analyzed for better evaluation, and the analysis model of flat plate system was determined. Finally, the progressive collapse resisting capacity was evaluated for structural system of super tall building. According to this study, the results by linear dynamic analysis were underestimated than the results by linear static analysis. Thus, the dynamic coefficient value of 2 provides conservative approach. The Effective Beam Width's model, currently used in field, is useful for the analysis about lateral force, but this model does not consider the effect of load redistribution by the slab. Hence, finite element analysis considering slab element will be needed for progressive collapse resisting capacity of the flat plate system. Finally, analysis model of 80-story building designed based on KBC(Korea Building Code) shows the weakness against progressive collapse because the DCR value is over 2. Thus, the countermeasure for alternative loading path such as installment of spandrel beam and reinforcements around slab is required to prevent the progressive collapse.

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

Construction Sequence Analysis for Checking Stability in High-Rise Building under Construction (초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석)

  • Kim, Jae-Yo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.618-623
    • /
    • 2008
  • Due to recent trends of the atypical plan shapes and the zoning construction in high-rise buildings, the building stability under construction is arising as an important issue for design and construction plan. To ensure the stability under construction, the differential column shortening and the lateral movements with unbalanced distributions of self-weight of structure members and the load flows before completion of member connections and lateral load resisting system should be checked by construction sequence analysis. This paper presents the scheme of zone-based construction sequence analysis, to check the stability of high-rise building under construction. This scheme is applied to the construction sequence analysis for real high-rise building under construction.

  • PDF

Nonlinear Analytical Model for RC Flat Plate Frames (RC 플랫 플레이트 골조의 비선형 해석모델)

  • Park, Young-Mi;HwangBo, Jin;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-244
    • /
    • 2008
  • In general, RC flat plate frames have been used as a gravity load resisting system(GLRS) in building. This system should be constructed with lateral force resisting system(LFRS) such as shear walls and brace frames. When lateral loads such as earthquakes occur, LFRS undergo displacement by which connected gravity systems experience lateral displacement. Thus, flat plate system designed as GLRS should be predict unbalanced moments and punching failure due to lateral deformation. This study developed an analytical mode for predicting nonlinear behavior of RC slab column connection for the seismic performance evaluation of RC flat plate frames. For verifying the analytical model, the test results of two flat plate specimens having two continous spans with the difference gravity shear ratio($V_g/{\phi}V_c$) were compared with the results of analysis. The developed model can predict the failure modes and punching failures.

  • PDF

A Study on Potential of Engineered Wood for 9-story Office Buildings (공학목재의 9층 사무소 건물 적용 가능성 연구)

  • Chu, Yurim;Kim, Taewan;Kim, Seung-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.163-170
    • /
    • 2017
  • The need for eco-friendly building materials such as engineered wood has increased to reduce carbon emissions. Although the range and height of engineered wood buildings are gradually increasing in North America and Europe, engineered wood is mainly used for low-rise residential buildings in Korea. In order to reduce carbon emissions more, therefore, it needs to expand the use of engineered wood by applying it to various buildings with different uses or more stories. With this background, the aim of this study is to investigate the applicability of engineered wood for 9-story office buildings. Since a 9-story building with engineered wood only is not allowed in KBC, an example building has RC ordinary shear walls as the lateral force resisting system while engineered wood is only used for gravity load resisting moment frames. Another example building is also used for comparison where both lateral and gravity load resisting systems are designed by RC. The applicability of engineered wood is investigated by comparing the seismic performance and the amount of carbon emission of both buildings. The result shows that the seismic performance of both buildings was not significantly different while the amount of carbon emission of the engineered wood building was much less then the RC building. Based on this result, engineered wood is sufficiently applicable to 9-story office buildings even though it still needs to pay attention to the shear design of reinforce concrete walls.

Challenges in Structural Design of Bumeo W-project

  • Kim, Jong Soo;Jo, Duck Won;Choi, Eun Gyu
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.167-173
    • /
    • 2020
  • W-Project is 60-story mixed-use residential building complex project in Daegu, the third biggest city in South Korea. There are lots explorable items to be solved to secure structural safety and meet the serviceability requirements. This paper describes what kind of structural system is optimized based on the architectural requirements and structural components design and the grade of concrete strength altered on floors. The defining process of lateral resisting system of outrigger compared to the core ratio of typical plan is illustrated in detail.