• 제목/요약/키워드: Lateral Vibration Analysis

검색결과 257건 처리시간 0.026초

KTX 차량의 후미 횡 진동에 관한 연구 (A Study on Lateral Vibration at the Tail of Train for KTX)

  • 김재철;이찬우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.6-11
    • /
    • 2005
  • During the acceptance test of KTX, lateral vibration of carbody at the tail of the train was found. The carbody lateral vibration was occurred on a straight line in the winter season. We analysis to find the cause of the lateral vibration and the countermeasure. The analysis results show that lateral stiffness of air spring is the most important parameter to cause the carbody lateral vibration. The lateral vibration is occurred at frequency range $0.5{\sim}0.6Hz$ with a negative damping value. We also blow that natural frequency of lateral vibration increase with the train speed up to 1Hz at 300km/h.

  • PDF

KTX 차량 후미진동 해석(I) (Dynamic Analysis of KTX Vibration at the Tail of the Train)

  • 강부병;김영우;왕영용
    • 한국철도학회논문집
    • /
    • 제6권2호
    • /
    • pp.122-128
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test, lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was "appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

KTX 주행특성 해석 (Dynamic analysis of KTX running characteristics)

  • 강부병;정흥채;김재철;구동회
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.718-723
    • /
    • 2003
  • The acceptance test of KTX has been performed in Korea. During the test lateral vibration of carbody over the accepted value called sway was found. Many activities have been taken to find the cause of the vibration and the counter-measure. KTX has 20 car trainset formation whose trailer cars are linked by articulate bogies. So this study is performed to see the effects of long trainset formation on vehicle dynamics and the train stability by 16 car vehicle model. Firstly the reliable vehicle model which shows well the tendencies appeared in the tests on the high speed test line is required to find the cause of lateral vibration and the countermeasure. Vehicle model was made for the analysis with VAMPIRE. The analysis results show that secondary air spring lateral stiffness is the most significant parameter to cause carbody lateral vibration. Mode analysis results show that the least damped mode shape is similar to the vibration pattern shown in the tests that the amplitude of the motion increases along the train set and decreases in the tail part. The lateral vibration was appeared at the speed range between 100km/h and 200km/h and disappeared at the low speed and the high speed.

  • PDF

고속철도 차량의 후미 횡진동 특성 및 저감방안에 관한 연구 (Study on Reduction Method and Characteristic of Lateral Vibration of the Tail Car in a High Speed Train)

  • 김재철;권석진
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.765-771
    • /
    • 2014
  • During the acceptance test of KTX, unexpectedly great lateral vibration in 14th~16th train at 150km/h~200km/h was appeared on a straight line in the winter season. Generally, stiffness of secondary suspension in KTX vehicle is one of the most sensitive components on air temperature. So, we examined that the secondary suspension to be mounted heating system was able to reduce the lateral vibration in the tail car of KTX. Also, we verified that lateral vibration from test results on KTX train with wheel conicity 1/20 disappeared. In this paper, we analysis effective reduction methods and the cause of the lateral vibration using model of KTX train and compare with the test results. The analysis results agree well with test ones. From mode analysis result, lateral vibration is occurred at natural frequency range 0.5~0.6Hz with a negative damping value and its natural frequency disappear gradually according to increasing of wheel concinicy.

기어 물림 효과에 의한 횡-비틀림 연성을 갖는 터보-냉동기 로터-베어링 시스템의 동특성 (Dynamic Characteristics of a Turbo-chiller Rotor-Bearing System having a Lateral-Torsional Coupling by Gear Mesh Effect)

  • 이안성;하진웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1034-1039
    • /
    • 2000
  • In turbo-machines operated at high speeds through gear speed increasers a precise coupled analysis of lateral and torsional vibrations is required to achieve highly reliable designs with low vibration and low noise levels, where the vibration coupling is due to the gear pair mesh stiffness. In this paper, applying the generalized coupled lateral-torsional finite element model of a gear pair element, has been analyzed a coupled lateral-torsional vibration of the prototype 800 RT turbo-chiller rotor-bearing system with a bull-pinion gear speed increaser. Results have shown that the coupled torsional natural frequencies have decreased due to the coupling effect of lateral vibration and particularly, the 2nd torsional natural frequency and its mode shape have had big changes. However, changes of lateral vibration characteristics have been noticed only at high lateral whirl natural frequencies above 15,000 rpm.

  • PDF

축소형 차량의 횡진동 해석 (Lateral Vibration Analysis of a Small Scale Railway Vehicle Model)

  • 이승일;손건호;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

축소형 철도차량의 설계변수에 따른 횡진동 해석 (Lateral Vibration Analysis for Design Parameter of the Scale Model of a Railway Vehicle)

  • 이승일;최연선
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1231-1237
    • /
    • 2006
  • The vibration of a running railway vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a of the scale model of a railway vehicle. Also, the effects on the car-body, bogie and wheelset were examined for the weight and the stiffness of the second suspension system. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension system increase. And the lateral vibration of the bogie increases as the mass ratio between car-body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

널말뚝의 횡방향진동이 진동타입력에 미치는 영향에 대한 연구 (A Study on the Effect of Lateral Vibration of Sheet Pile on Vibratory Driving Force)

  • 이승현;김병일
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.848-852
    • /
    • 2007
  • 널말뚝의 관입속도 예측을 위한 해석수단 중 많은 경우에 얕은 근입깊이에 대해서 관입속도를 지나치게 크게 평가하기 때문에 해석법의 신뢰성을 떨어뜨리는 요인으로 작용한다. 본 연구에서는 이러한 해석상의 단점을 보완하고자 널말뚝의 휨진동모델을 정립하고 휨진동에 의해 발생하는 에너지 손실량을 평가하였다. 또한 휨진동에 의한 에너지손실에 따른 진동타입력의 감소를 하중감소계수를 써서 반영하고자 하였다.

  • PDF

공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구 (A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;길병래;조권회;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권2호
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.

Analysis on lateral vibration characteristics of the deep-sea mining pipe

  • Xiao, Linjing;Liu, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.835-851
    • /
    • 2022
  • This paper analyzes the variation law of the pipe lateral vibration characteristics, it was treated as a beam model, and was dispersed into several subunits based on the FEM. The corresponding stiffness and mass matrix of the pipe was deduced by using Hermite interpolation function, and the overall dynamic balance equation was established. The lateral vibration under different pipe lengths, thicknesses and towing speeds are solved by integral method. The results show that the pipe vibration trend decreases first and then increases, and the vibration value at the ore bin is larger than that at the pump set, and the value at the top is the largest, and the least value location can change with the length increase. Increasing length and thickness can reduce lateral vibration value, while increasing speed can increase the value. Neither the thickness nor the towing speed will change the location where the least value occurs. The vibration intensity will increase with the decrease of pipe length and thickness and the increase of towing speed.