• Title/Summary/Keyword: Lateral Resolution

Search Result 168, Processing Time 0.044 seconds

Development of a New Cardiac and Torso Phantom for Verifying the Accuracy of Myocardial Perfusion SPECT (심근관류 SPECT 검사의 정확도 검증을 위한 새로운 심장.흉부 팬텀의 개발)

  • Yamamoto, Tomoaki;Kim, Jung-Min;Lee, Ki-Sung;Takayama, Teruhiko;Kitahara, Tadashi
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.389-399
    • /
    • 2008
  • Corrections of attenuation, scatter and resolution are important in order to improve the accuracy of single photon emission computed tomography (SPECT) image reconstruction. Especially, the heart movement by respiration and beating cause the errors in the corrections. Myocardial phantom is used to verify the correction methods, but there are many different parts in the current phantoms in actual human body. Therefore the results using a phantom are often considered apart from the clinical data. We developed a new phantom that implements the human body structure around the thorax more faithfully. The new phantom has the small mediastinum which can simulate the structure in which the lung adjoins anterior, lateral and apex of myocardium. The container was made of acrylic and water-equivalent material was used for mediastinum. In addition, solidified polyurethane foam in epoxy resin was used for lung. Five different sizes of myocardium were developed for the quantitative gated SPECT (QGS). The septa of all different cardiac phantoms were designed so that they can be located at the same position. The proposed phantom was attached with liver and gallbladder, the adjustment was respectively possible for the height of them. The volumes of five cardiac ventricles were 150.0, 137.3, 83.1, 42.7 and 38.6ml respectively. The SPECT were performed for the new phantom, and the differences between the images were examined after the correction methods were applied. The three-dimensional tomography of myocardium was well reconstructed, and the subjective evaluations were done to show the difference among the various corrections. We developed the new cardiac and torso phantom, and the difference of various corrections was shown on SPECT images and QGS results.

  • PDF

The Developmental Outcome of Fetal Mild Isolated Ventriculomegaly (단독 태아 경뇌실확장증의 임상적 예후)

  • Jeong, Myung Sook;Chun, Jung Mi;Kim, Kyung Ah;Ko, Sun Young;Lee, Yeon Kyung;Shin, Son Moon;Lee, Eu-Ree
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.8
    • /
    • pp.826-831
    • /
    • 2005
  • Purpose : This study is directed to evaluate standardized developmental test performances of infants and children who, as fetuses, had mild isolated cerebral ventriculomegaly diagnosed by ultrasound. Methods : All prenatal sonographic findings from 2001 to 2002 were evaluated. Live isolated mild ventriculomegaly(IMVM) of 10-15 mm were observed in 95 cases(1.1 percent). Standardized developmental testing of 40 cases of IMVM and 36 cases in a comparison group were offered to parents Both groups of children were adjusted to normal antepatum subjects with respect to sex, race, indication for ultrasound and gestational age at the time of ultrasound. Test of cognitive and motor development(Bayley Scales of Infant Development, Second Edition; BSID-II) were administered by developmental examiners. Results : Forty cases and 34 comparison sujects completed the testing. The IMVM and comparison groups were similar with respect to parental age, gestational age, birth weight, familial socioeconomic status. The IMVM subjects scored lower than the comparison group on both the BSID-II, but there was not statistically significant. differences; metal development index(MDI)($92.7{\pm}12.9$ vs $94.7{\pm}14.1$, P=0.47) and psychomotor development index(PDI)($100.3{\pm}14.1$ vs $101.3{\pm}10.7$, P=0.75). Eleven cases(27.5 percent) of IMVM group and five cases(14.7 percent) of the comparison group were developmentally delayed, but most cases in both groups showed mild delays. Resolution or lack of progression, lateral ventricle diameter ${\leq}12mm$ and females were associated with better scores, but there were not statistically significant. Polarity, and head circumference were not related to later development. Conclusion : This study show children with MIVM did not delay performance in the developmental test, but we might suggest a tendency to increase the risk of mild developmental delay.

Study on the Usefulness about Molecular Breast Imaging In Dense Breast (치밀형 유방에서 Molecular Breast Imaging 검사의 유용성에 관한 고찰)

  • Baek, Song Ee;Kang, Chun Goo;Lee, Han Wool;Park, Min Soo;Choi, Young Sook;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.42-46
    • /
    • 2016
  • Purpose Mammography is the most widely used scan for the early diagnosis since it is possible to observe the anatomy of the breast. however, The sensitivity is markedly reduced in high-risk patients with dense breast. Molecular Breast Imaging (MBI) sacn is possible to get the high resolution functional imaging, and This new neclear medicine technique get the more improved diagnostic information through It is useful for confirmation of tumor's location in dense breast. The purpose of this study is to evaluate the usefulness of MBI for tumor diagnosis in patients with dense breast. Materials and Methods We investigated 10 patients female breast cancer with dense breast type who had visited the hospital from September 1st to Octorber 10th, 2015. The patients underwent both MBI and Mammography. MBI (Discovery 750B; General Electric Healthcare, USA) scan was 99mTc-MIBI injected with 20 mCi on the opposite side of the arm with the lesions, after 20 minutes, gained bilateral breast CC (CranioCaudal), MLO (Medio Lateral Oblique) View. Mammography was also conducted in the same posture. MBI and Mammography images were compared to evaluate the sensitivity and specificity of each case utilizing both image and two images in blind tests. Results The results of the blind test for breast cancer showed that the sensitivity of Mammography, MBI scan was 63%, 89%, respectively, and that their specificity was 38%, 87%, respectively. Using both the Mammography and MBI scan was Sensitivity 92%, specificity 90%. Conclusion This research has found that, The tumor of dense tissue that can not easily distinguishable in Mammography is possible to more accurate diagnosis since It is easy to visually evaluation. But MBI sacn has difficulty imaging microcalcificatons, If used in conjunction with mammography it is thought to give provide more diagnostic information.

  • PDF

MR Evaluation of Tendinous Portions in the Subscapularis Muscle (견갑하근의 건 부분에 대한 자기공명영상을 이용한 분석)

  • Shon, Min-Soo;Koh, Kyoung-Hwan;Lee, Sung-Sahn;Yoo, Jae-Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.35-45
    • /
    • 2011
  • Purpose: The purpose of this study was to document the structural features of the tendinous portions within the non-pathologic subscapularis muscle by performing high resolution MR imaging of the shoulder. Materials and Methods: Between April 2007 and May 2010, we retrospectively obtained the MR scans of 88 consecutive young patients (88 shoulders) who were in their twenties. MRI and MR arthrography were performed using a 3.0-T system for the evaluation of glenohumeral instability and nonspecific shoulder pain. None of the patient in this study had any evidence of injury to the tendon or muscle belly of the subscapularis. On MR images, we recorded the transverse length of a stout tendinous band and the total tendinous portion of the subscapularis. In addition, we recorded the number of intramuscular tendinous slips of the susbscapularis. Results: The mean transverse length of the tendinous band was 15.0 mm (range: 8 to 20 mm). The mean transverse length of the total tendinous portion was 48.9 mm (range: 40 to 60 mm). The number of intramuscular tendinous slips on the base of the glenoid fossa was 3 in 20 (22.72%), 4 in 45 (51.14%) and 5 in 23 shoulders (26.14%). On the lateral portion, the intramuscular tendinous slips became gradually rounder and thicker and they gave converge in the superior direction. Conclusion: In this study, the structural features of the tendinous portions of the subscapularis on the MR scans were identified. This will in return give good justification for the lines to be pulled during biomechanical stimulation and also for the surgical approach to restore the biomechanical function.

Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols (64 채널 Multi-Detector Computed Tomography를 이용한 관상동맥검사의 선량 : 검사 프로토콜 다변화에 따른 환자선량 감소)

  • Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Purpose : To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Materials and Methods : Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation ($0.625\;mm{\times}64\;ea$), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of $40{\sim}80%$ of R-R interval and 120mA(80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. Results : The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with that of conventional coronary CTA. And heart dose was 33.8 mGy, this represents 67.4% reduction. In the sequential scan technique under prospective ECG gating with low kVp the mean effective dose was 3.0 mSv, this represents an 83.2% reduction compared with that of conventional coronary CTA. And heart dose was 17.7 mGy, this represents an 82.9% reduction. Conclusion : In coronary CTA at retrospectively ECG gated helical scan, cardiac dose modulation technique using low kVp reduced dose to 50% above compared with the conventional helical scan. And the prospectively ECG gated sequential scan offers substantially reduced dose compared with the traditional retrospectively ECG gated helical scan.

  • PDF

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.

Evaluation of Cat Brain infarction Model Using MicroPET (마이크로 PET을 이용한 고양이 뇌 경색 모델의 평가)

  • Lee, Jong-Jin;Lee, Dong-Soo;Kim, Yun-Hui;Hwang, Do-Won;Kim, Jin-Su;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.528-531
    • /
    • 2004
  • Purpose: PET has some disadvantage in the imaging of small animal due to poor resolution. With the advent of microPET scanner, it is possible to image small animals. However, the image quality was not good enough as human image. Due to larger brain, cat brain imaging was superior to mouse or rat. In this study, we established the cat brain infarction model and evaluate it and its temporal charge using microPET scanner. Materials and Methods: Two adult male cats were used. Anesthesia was done with xylazine and ketamine HCl. A burr hole was made at 1cm right lateral to the bregma. Collagenase type IV 10 ${\mu}l$ was injected using 30 G needle for 5 minutes to establish the infarction model. $^{18}F$-FDG microPET (Concorde Microsystems Inc., Knoxville, TN) scans were performed 1, 11 and 32 days after the infarction. In addition, $^{18}F$-FDG PET scans were performed using human PET scanner (Gemini, Philips medical systems, CA, USA) 13 and 47 days after the infarction. Results: Two cat brain infarction models were established. The glucose metabolism of an infarction lesion improved with time. An infarction lesion was also distinguishable in the human PET scan. Conclusion: We successfully established the cat brain infarction model and evaluated the infarcted lesion and its temporal change using $^{18}F$-FDG microPET scanner.

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF