• Title/Summary/Keyword: Lateral Control

Search Result 1,473, Processing Time 0.022 seconds

Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface (시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어)

  • Lee, Chang-Ro;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.

The MPI CyberMotion Simulator: A Novel Research Platform to Investigate Human Control Behavior

  • Nieuwenhuizen, Frank M.;Bulthoff, Heinrich H.
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.122-131
    • /
    • 2013
  • The MPI CyberMotion Simulator provides a unique motion platform, as it features an anthropomorphic robot with a large workspace, combined with an actuated cabin and a linear track for lateral movement. This paper introduces the simulator as a tool for studying human perception, and compares its characteristics to conventional Stewart platforms. Furthermore, an experimental evaluation is presented in which multimodal human control behavior is studied by identifying the visual and vestibular responses of participants in a roll-lateral helicopter hover task. The results show that the simulator motion allows participants to increase tracking performance by changing their control strategy, shifting from reliance on visual error perception to reliance on simulator motion cues. The MPI CyberMotion Simulator has proven to be a state-of-the-art motion simulator for psychophysical research to study humans with various experimental paradigms, ranging from passive perception experiments to active control tasks, such as driving a car or flying a helicopter.

Lateral Control of Vehicles Using Vision System

  • Kim, Eun-Joo;Kim, Chang-Sub;Ha, Sung-Gi;Yoon, Kang-Sub;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.6-101
    • /
    • 2002
  • The LQG/LTR controller is a robust and stable control which is systematic method with a view of engineering. And the scheme is adopted for the design of the controller to reduce the effects of the disturbances. In this paper, We develop an algorithm that decides the distance and directions between the guide line that is made by a series of magnets and MR sensors of vehicle. LQG/LTR and Controller Design of Lateral Control System for a vehicle is developed with 3 DOF (degree-of-freedom) model. The performance has been compared for the employed two types of controllers via computed simulations. The results show that the controller provides more robustness property for t...

  • PDF

Design of Lateral SCAS based on H for Tilt Rotor Aircraft (H 기반 틸트로터 항공기 횡방향 SCAS 설계)

  • Lee, Jangho;Yoo, Changsun;Walker, Daniel J.
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • The tilt rotor aircraft has the flight characteristics which takes off vertically like a helicopter and flies forward like an airplane. Especially, the transition process from a helicopter to an airplane mode requires not only the mixing of control inputs but also the stability and controllability augmentation system(SCAS) in order to keep the safe flight because there are compound flight dynamic characteristics of a helicopter and an airplane including non-linearity, uncertainty. This paper describes the design of SCAS in a lateral motion for the tilt rotor aircraft based on the $H_{\infty}$ control method, which was performed from mathematical model with weighting matrix based on the relationship between the $H_{\infty}$ norm and the sensitivity function. Through simulation analysis for the controller designed on the $H_{\infty}$ control theory, it was shown that this method may be applied to the control design of the tilt rotor aircraft.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Effects of Trunk Position Sense through Visual Cue Deprivation Balance Training in Subacute Stroke (앉은 자세에서의 시각을 차단한 균형훈련이 아급성기 뇌졸중 환자의 체간 위치감각에 미치는 영향)

  • Han, Kyu-Bum;Shin, Won-Seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.3
    • /
    • pp.327-335
    • /
    • 2013
  • PURPOSE: The purpose of this study is to investigate effects of trunk position sense through visual cue deprivation balance training in subacute stroke patients. METHODS: The subjects were randomly allocated to two groups: experimental(n=10) and control(n=10). Both groups performed balance training on sitting for 30minute after measurements. Trunk position sense test was assessed using the David back concept to determine trunk repositioning error for four movement(flexion, extension, affected side lateral flexion, non-affected side lateral flexion). Measurements on each test were assessed prior to the balance training and then immediately following the balance training. RESULTS: In comparison of the difference of the trunk position sense between groups, the experimental group decreased significantly in trunk repositioning error of flexion, extension and affected side lateral flexion than control group(p<.05). CONCLUSION: The trunk position sense of the experimental group showed more improvement after the balance training program compared to the control group, Therefore, these results suggest that visual cue deprivation training is considered an effective exercise method for individuals with subacute stroke.

Topology Optimization of a HDD Actuator Arm

  • Chang, Su-Young;Cho, Ji-Hyon;Youn, Sung-Kie;Kim, Cheol-Soon;Oh, Dong-Ho
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • A study on the topology optimization of a Hard-Disk-Driver(HDD) actuator arm is presented. The purpose of the present wert is to increase the natural frequency of tole first lateral mode of the HDD actuator arm under the constraint of total moment of inertia, so as to facilitate the position control of the high speed actuator arm. The first lateral mode is an important factor in the position control process. Thus the topology optimization for 2-D model of the HDD actuator arm is considered. A new objective function corresponding to multieigenvalue optimization is suggested to improve the solution of the eigenvalue optimization problem. The material density of the structure is treated as the design variable and the intermediate density is penalized. The effects of different element types and material property functions on the final topology are studied. When the problem is discretized using 8-node element of a uniform density, tole smoothly-varying density field is obtained without checker-board patterns incurred. AS a result of 7he study, an improved design of the HDD actuator arm is suggested. Dynamic characteristics of the suggested design are compared computationally with those of the old design. With the same amount of the moment of inertia, the natural frequency of the first lateral mode of the suggested design is subsequently increased over the existing one.

  • PDF

Histologic evaluation of low-intensity pulsed ultrasound effects on bone regeneration in sinus lift

  • Kim, Sang-Hun;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.6
    • /
    • pp.271-275
    • /
    • 2010
  • Purpose: Many techniques have been described for achieving vertical augmentation of the maxillary sinus. The aim of this study is to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) to enhance bone regeneration after sinus floor elevation. Methods: The sinus lifting technique was performed through a lateral approach on 8 different sites of 5 patients (3 males and 2 females) and their mean age was 45.7 years old. The sites were randomly assigned to the control or test groups. The control group had 4 sites that received lateral sinus lifting procedure only, while the test group had 4 sites that received LIPUS application after the lateral sinus lifting procedure. 24-32 weeks (an average of 29 weeks) postoperatively, new bone formation in the augmented sinus sites was evaluated through histologic and histomorphometric analyses of the biopsy specimens obtained during implant placement. Results: In the test group, the mean percentage of newly formed bone was $19.0{\pm}2.8$%. In the control group, the mean percentage of newly formed bone was $15.2{\pm}3.1$%. The percentage of newly formed bone was approximately 4% higher in those cases where the sinus was treated by LIPUS than the percentage in those cases where it was not used. The difference was statistically significant. Conclusions: Within the scope of this study, low-intensity pulsed ultrasound application after sinus lifting appeared to have a significant effect on the development of new bone formation.

Hysteretic Behavior of Steel Damper for the Lateral Displacement Control (횡 변위 조절을 위한 강재 댐퍼의 이력 거동)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • Detail development and performance tests were conducted for the purpose of developing a damper system capable of lateral displacement control of existing frame structures. The development details are 1) ALD designed to prevent deformation of beams between columns and 2) AWD designed to control inter-story displacement. The non-reinforced BF specimen was used as a comparative study. The evaluation variables are failure mode, load-displacement curve, envelope curve, maximum strength, stiffness degradation and energy dissipation capacity. As a result, the seismic strengthening effect of ALD and AWD was confirmed. Also, it was confirmed that the method of restraining the column with the aramid sheet is superior to the improvement of the seismic performance.

A Study on an Independent 6WD/6WS of Electric Vehicle using Optimum Tire Force Distribution (최적 타이어 힘 분배 방법을 통한 전기차의 독립 6WD/6WS에 관한 연구)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Kim, Young-Ryul;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.632-638
    • /
    • 2010
  • This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.