• 제목/요약/키워드: Later pressure

검색결과 283건 처리시간 0.02초

승모판협착증 환자에서 경피적 풍선확장판막성형술의 폐기능 및 운동부하 검사에 대한 효과 (Effects of Percutaneous Balloon Mitral Valvuloplasty on Static Lung Function and Exercise Performance)

  • 김용태;김우성;임채만;진재용;고윤석;김재중;박성욱;박승정;이종구;김원동
    • Tuberculosis and Respiratory Diseases
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 1994
  • 연구배경 : 승모판 협착증 환자들은 폐기능검사상 제한성 및 폐쇄성 환기장애를 동시에 나타낼 수 있으며, 또한 운동능력의 장애가 있다는 것은 잘 알려져 있다. 이러한 폐기능의 장애는 수술적 판막교정술에 의해 일부 호전이 있었다고 보고되어 왔다. 이에 저자들은 흉부폐쇄하에서의 경피적풍선확장 승모판막성형술에 의해 승모판 협착증을 교정한후, 폐기능검사 및 운동능력의 호전 정도 및 시술후 사간적 경과에 따른 변화를 보기 위해 본 연구를 시행하였다. 방법 : 승모판 협착증을 가진 46명을 대상으로 하였으며 심초음파상 좌심방혈괴가 보이거나, 승모판 폐쇄부전증이 grade 2이상인 경우는 제외하엿다. 승모판 협착증의 교정전후 폐활량측정법, 폐확산능 및 운동부하검사를 시행하였으며 폐기능의 시간적 경과에 따른 변화를 보기 위하여 폐기능 및 운동부하검사의 추적검사를 11명의 환자에서 평균 5개월 후에 실시하였다. 그리고 동율동을 보인 29명의 환자를 폐동맥압에 의해 A, B 양군으로 나누고, 양군간의 판막성형술 전후 폐기능 및 운동부하 검사결과를 비교하였다. 결과 : 경피적풍선 확장 판막성형술후 평균 10일째 시행한 폐기능 및 운동부하검사결과를 수술전 검사 결과와 비교시, 노력성폐활량(FVC), 1초간노력성호기량($FEV_1$), 노력성호기중간유량($FEF_{25-75%}$), 최고호기유속(PEF), 최대산소섭취량($\dot{V}O_2$ max) 및 무산소역치(AT)등의 유의한 증가가 있었으며, 폐확산능(DLco)의 유의한 감소가 있었다. 한편 5개월뒤 추적 검사한 11명의 환자에서 시술직후와 비교시 폐기능 검사 및 운동부하 검사결과의 유의한 증가는 없었다. 동율동을 보인 29예를 폐동맥압이 35mmHg보다 높은 경우 A군(16예), 35mmHg 이하인 경우 B군(13예)으로 분류하였다. A군에서는 판막성형술전 FVC, $FEV_1,\;\dot{V}O2$ max가 B군보다 유의하게 낮았으나 판막성형술후 A군에서 B군보다 FVC, $FEV_1,\;\dot{V}O_2$ max의 유의한 증가를 보였다. 그리고 A군에서 판막성형술후 AT 및 $\dot{V}O2$ max에서의 분당 산소섭취량에 대한 분당환기량($\dot{V}E/\dot{V}O_2$)과 분당 이산화탄소 생산량에 대한 분당 환기량($\dot{V}E/\dot{V}O_2$)이 유의하게 감소하였으나, B군에서는 AT에서의 $\dot{V}E/\dot{V}O_2$$\dot{V}E/\dot{V}CO_2$는 유의한 감소를 보였으나, $\dot{V}O_2$ max에서의 $\dot{V}E/\dot{V}O_2$$\dot{V}E/\dot{V}CO_2$는 유의한 변화가 없었다. 결론: 1) 승모판협착증 환자에서 경피적풍선확장 판막성형술(PMV)후 1개월 이내 시행한 폐기능검사 및 운동부하 검사상 유의한 호전이 있었다. 2) 중등도 이상의 폐고혈압을 보인 승모판협착증 환자에서 폐동맥압 상승이 경미한 예보다 운동수행 능력의 유의한 증가가 있었다. 3) 중등도 이상의 폐고혈압을 보인 승모판협착증 환자에서 판막성형술후 운동능력의 유의한 호전은 분당 산소소모량에 대한 분당 환기량의 감소에 기인한 것으로 사료되었다.

  • PDF

만경강유역의 개간과정과 취락형성발달에 관한 연구 (A Study on the Cultivation Processes and Settlement Developments on the Mangyoung River Valley)

  • 남궁봉
    • 한국지역지리학회지
    • /
    • 제3권2호
    • /
    • pp.37-87
    • /
    • 1997
  • 만경강유역을 하나의 연장선상에 놓고 연구한 결과, 그 공간상에서 역사와 더불어 형성발달해온 시공연속체를 확인할 수 있었다. 만경강상류에서 하류 하구연안에 이르는 면장공간상에서의 개간과정은 여말에서 부터 시작되어 오늘에 이른 것으로 볼 수 있다. [기원지-지향지] 지향가설에서 본 개간과정에서 개간의 기원지는 만경강상류 산간계곡의 지류곡지 개간을 효시로 하여 기원지가 이루어지고, 조선조 중기까지는 수방대책의 발달과 더불어 하천 중류까지 진출하고, 하천 본류에 대한 하류지역의 계간은 하천의 규모와 유수량의 증가로 인한 하안의 홍수와 범람을 극복할 수 있는 인공제방을 축조할 수 있는 기술수준에 이른 1920년대에 들어서야 본격화되고, 그후 연이어 하구연안의 간석지 개간도 시행되어 개간의 개척첨단이 이들 지향지인 해안간석지일대에 형성되는 것을 볼 수 있다. 시간의 흐름과 더불어 각 시기마다 공간의 변화도 수반되어 시공연속체가 발달하는 것을 볼 수 있다. 취락의 경우 개간과정에 따라 산간계곡 산록일대에서는 주변입지적 집촌, 하천중류와 하류에서는 중앙입지적 집촌, 하천하구 간석지에서는 중앙입지적 열촌형태가 우세하게 나타났다.

  • PDF

논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I) (Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice)

  • 류한열;김철기
    • 한국농공학회지
    • /
    • 제16권2호
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF