• Title/Summary/Keyword: Latent Hydraulic

Search Result 34, Processing Time 0.025 seconds

Effect of Chemical Composition on the Latent Hydraulic Activity of Blast Furnace Slag (고로슬래그의 잠재수경성에 미치는 화학조성의 영향)

  • 장복기;임용무
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.453-458
    • /
    • 2000
  • Glasses showing the composition of blast furnace slag were made in the laboratory, and the effect of the chemical composition on the latent hydraulic activity of the slags was examined. The latent hydraulicity was greatly influenced by the composition change, the optimal characteristic of the hydraulicity was achieved at the slag composition of 47CaO:20Al2O3:33SiO2. The content of CaO and Al2O3 were not equivalent to the hydraulic activity of the slags as the b-formula (KS L 5210) indicates. Good latent hydraulicity was shown when Al2O3 was richly contained at the high (CaO+Al2O3):SiO ratio, while the more the MgO content was, the more negative the result turned out.

  • PDF

The Effect on Latent Hydraulic Property of the Blast-furnace Slag by Alkali Activator (알칼리 자극제가 고로슬래그의 잠재수경성에 미치는 영향)

  • Lee, Seung-Han;Park, Jeong-Seob;Jung, Yong-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.929-934
    • /
    • 2001
  • This study aimed to examine the cause of latent hydraulic property manifestation of ground granulated blast-furnace slag(GGBFS) using different alkali activators in pH, type and quantity. According to the experimental result, the higher pH value accelerated lastly latent hydraulic property and the early stage strength of GCBFS was ranked as activators with the higher pH, in an order of NaOH, $Ca(OH)_{2}$ and $Na_{2}$$Co_{3}$. Also, NaOH had accelerated latent hydraulic property of GGBFS, which had 40~50% of the 3 and 7 days compressive strength of base mortar in case of using 10% of powder-weight. In the case of 30% of GGBFS substitution with annexing 2.5% $Ca(OH)_{2}$, the compressive strength on the 3 and 7 days of the early-age, was increased to 5~10% than that of the same admixture with no activator. With annexing 5.0% $Ca(OH)_{2}$, the strength was increased to 10~20%. Although activator NaOH was effective on the manifestation of latent hydraulic property, it caused cement mortar compressive strength decrease by enlarging pore diameter.

  • PDF

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

Evaluation on Sulfate Attack Resistance of Cement Matrix (시멘트 경화체의 황산염침식 저항성 평가)

  • 문한영;김홍삼;이승태
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.141-151
    • /
    • 2000
  • Compressive strength, sulfate deterioration factor(SDF) and length change of 5 types of mortars immersed in sodium sulfate solution were observed. As the results of tests, it was found that the sulfate resistance of blended cement mortars were superior to that of portland cement mortars. Pore volume with diameter larger than 0.1 $\mu\textrm{m}$ of 5 types of pastes indicated that the micro-structures of blended cement pastes were denser, due to pozzolan reaction and latent hydraulic properties, than those of portland cement pastes. The XRD, ESEM, EDS and TG analyses demonstrated that the reactants such as ettringite and gypsum were significantly formed in portland cement pastes. Besides, compared with the $Ca(OH)_2$ content of ordinary portland cement pastes immersed in water and sodium sulfate solution, the $Ca(OH)_2$ contents of fly ash blended cement and ground granulated blast-furnace slag cement paste were about 58% and 28% in water, and 55% and 20% in sodium sulfate solution, respectively.

An Experimental Study on the Compressive Strength Property of Concrete with Ground granulated Blast Furnace Slag Using Wash Water from Recycled Aggregates (순환골재 세척수를 혼입한 고로슬래그 콘크리트의 압축강도 특성에 관한 실험적 연구)

  • Jung, Sang-Kyung;Shin, Sang-Yeop;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.34-35
    • /
    • 2015
  • The purpose of this study is to investigate the compressive strength property of concrete with Ground granulated blast furnace slag(GBFS) using wash water from recycled aggregate. When GBFS is reacted with water, it doesn't happen to hydraulic reaction but GBFS becomes latent hydraulic property in alkaline environment. For this reason, if it is possible to use wash water from recycled coarse aggregate as mixture water, GBFS have the advantage of early strength due to effect of activation. We investigated the compressive strength properties of GBFS concrete using wash water from recycled aggregate. According to the experimentation result, ICP-OES showed wash water from recycled coarse aggregate has a high alkali value of pH of 12. Also, compressive strength in early age using wash water can be improved as an activation.

  • PDF

Effect of Hardening of Granulated Blast Furnace Slag on the Liquefaction Strength (고로 수쇄슬래그의 경화가 액상화 강도에 미치는 영향)

  • Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.99-106
    • /
    • 2006
  • In the present study, in order to clarify the effects of latent hydraulic property of granulated blast furnace slag (GBF slag) on the liquefaction, GBF slag was cured in the high temperature alkali water (adding the calcium hydroxide, pH=12, water temperature is about $30^{\circ}C$), and then the cyclic and the static tri-axial compression tests were carried out. Then the results were compared with those for Japanese standard sand of Toyoura sand and natural sand of Genkai sand. From the test results, it is clarified that the liquefaction strength of the GBF slag increases with the increase of the curing period by the hardening due to the latent hydraulic property. It is also shown that GBF slag with Dr=50% and 80% which was cured for 189 days in the fresh-water shows cohesion due to developing of latent hydraulic property. In addition, as for the liquefaction strength of GBFS during the hardening process, a linear relation between the cyclic stress ratio $R_{20}$ at the number of stress cycles Nc=20 and cohesion $C_{d}$ was observed. It is also clarified that the liquefaction strength for cured GBF slag in the high temperature alkali water is predicted by the cohesive strength or the unconfined compressive strength.

A Study on Shortcomings of Mechanical Model with Lumped Mass for Dynamic Characterization of Hydraulic Mounts and Confirmation of Hydraulic Model by Improvement of Experimentations (유체 봉입 마운트의 동적 특성화를 위한 집중질량 요소를 갖는 기계적 모형의 문제점 파악과 실험 방법 개선을 통한 수력학적 모형의 타당성 확인)

  • 배만석;이준화;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.393-399
    • /
    • 2003
  • Hydraulic mounts show strong1y frequency-dependent stiffness and damping characteristics in low frequency range, which result from so called inertia track dynamics. A lumped mass has been incorporated in several mechanical models of the literature to take the inertia effect of the fluid in the track into consideration. Although complex s%illness by the mechanical model showed good agreements with the measured values, there exists a critical pitfall. In this paper, the shortcomings of mechanical models with lumped mass for hydraulic founts are clearly identified by illustrating actual measurements of the stiffness parameters for a hydraulic mount. It is conclusively discussed that the inertia effect of the fluid flow through the circular track is significant but latent. As an alternative to the mechanical model, a hydraulic model is claimed to be used for further dynamic analysis of engine/mount system or whole car system.

Experimental Study on Evaluation of Abrasion Resistance of Concrete Irrigation Facilities (콘크리트 수리구조물의 수중마모저항성 평가기술에 관한 실험적 연구)

  • Kim, Meyongwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • The purpose of this paper is to propose an experimental method to evaluate the resistance of abrasion about 24 MPa, 27 MPa, and 30 MPa compressive strength. These strength are used in the design and construction of concrete hydraulic structures in Korea. The mixing ratios of the ready mixed concrete strengths were investigated countrywide and set the representative mixture proportion ratios of the nine mixed types of OPC, FA and BFS. After making and curing the test specimens, the underwater abrasion test was performed. ASTM C 1138 International Standard was used to fabricate the test equipment, and the surface abrasion resistance of the specimen was tested using the test equipment. In the case of OPC, the 30% abrasion resistance improvement effect was observed at 72 hours as the water-binder ratio decreased. That was reason the coated cement bond strength of the specimen was strong. In the case of BFS and FA, it was improved by 9.9% and 3.8%, respectively, at 72 hours as the water-binder ratio decreased. It was due to the characteristics of the latent hydraulic and pozzolanic reactions. Generally, the relative abrasion resistance of concrete can be evaluated at 24 hours. However, in case of low strength (under 24 MPa), the surface mortar layer wears much faster at the first 12 hours, so it can be considered to evaluate the relative abrasion loss rate at this point.

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

Fundamental Properties of Blast Furnace Slag-Based Mortar Made with Recycled Fine Aggregate (순환잔골재 치환율 변화에 따른 고로슬래그 미분말 모르터의 기초적 특성)

  • Kim, Young-Hee;Han, Sang-Yoon;Son, Ho-Jeong;Lee, Hyang-Jae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.213-214
    • /
    • 2011
  • This study investigates the fundamental properties of bast furnace-based mortar made with recycled fine aggregate. Results showed that increasing recycled fine aggregate accelerated setting time, proportionally increased the compressive and flexural strength of mortar specimens. However, it is concluded that for quality and cost effectiveness, the optimum content of this recycled fine aggregate in mortar was found to be 80%.

  • PDF