• 제목/요약/키워드: Latent Heat Recovery

검색결과 37건 처리시간 0.025초

배기열 회수용 종이 열교환기의 성능에 관한 연구 (A Study on the Performance of Paper Heat Exchanger for Exhaust Heat Recovery)

  • 유성연;정민호;최재호;권화길;이춘우;이기성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.245-250
    • /
    • 2003
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. The purpose of this research is to find the performance of paper heat exchanger for exhaust heat recovery, which exchanges latent heat as well as sensible heat. Experimental apparatus comprises heat exchanger model, constant temperature and humidity chamber, fan and measurement systems for temperature, pressure and flow rate. Thermal performance and pressure loss of the paper heat exchanger are measured and compared at various air velocities and outdoor conditions. Experimental results show that paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air.

  • PDF

향온시설물에 대한 현열 및 잠열 에너지 회수시스템의 성능해석 (Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facilities)

  • 박병규;김무근;김근오
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1057-1065
    • /
    • 2000
  • A sizing of sensible and latent energy recovery system with condensing heat exchanger is important to the design of a thermally controlled facilities. The transient system simulation program TRNSYS 14.2/IISiBat has been used to evaluate the energy consumptions of a thermally controlled facilities which consist of boiler, chiller and condensing heat exchanger, The boiler and chiller are selected based on the annual peak loads and controlled to maintain the setting temperature of $14~17^{\circ}C$. Simulation shows that the amount of sensible and latent energy recovered by heat exchanger is almost 20% of total heating load.

  • PDF

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법 (Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis)

  • 김태규;최정길;홍준표;이진형
    • 한국주조공학회지
    • /
    • 제13권4호
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF

3중관 튜브형 잠열 축열조에서의 열전달 특성 연구 (Heat transfer characteristics of Triple-Tube Type Latent Heat Storage Tank)

  • 이욱균;한귀영;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제21권1호
    • /
    • pp.71-82
    • /
    • 2001
  • The heat transfer experiment in a latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of triple - tube type ; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and inside tube for hot water recovery. The heat storage tank has the dimension of 60 cm long and 34 cm outside diameter. Paraffin wax(m.p = 55.4C) and sodium acetate trihydrate(m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage$(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

내부코일형 잠열 축열조에서의 열전달 특성 연구 (Heat transfer characteristics of Immersed Coil Type Latent Heat Storage Tank)

  • 이욱균;한귀영;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제21권1호
    • /
    • pp.83-91
    • /
    • 2001
  • The heat transfer experiment in a pilot scale latent heat storage tank as a solar energy storage system for the hot water supply was carried out. The latent heat storage tank was consisted of three parts; Outer shell for hot water from solar collector, PCM storage vessel in the middle of the tank and immersed coil in the PCM vessel for hot water recovery. The heat storage tank has the dimension of 115 cm in height and 32 cm outside diameter. Paraffin wax (m.p = 55.4C) and sodium acetate trihydrate (m.p = 58 C) were employed as the PCM this study. Experimental variables were inlet temperature and flow rate of the hot water for heat storage stage and cold water for heat recovery stage. Temperature profiles, heat transfer coefficient and the efficiency of heat storage $(Q/Q_{max})$ and heat recovery $(Q/Q_{max})$ were determined for the paraffin wax and inorganic salt respectively.

  • PDF

실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토 (An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement)

  • 최연희;송두삼
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

배기열 회수용 종이 열교환기의 성능에 영향을 미치는 인자에 관한 연구 (A Study on the Factors Affecting the Performance of Paper Heat Exchanger for Exhaust Heat Recovery)

  • 정민호;유성연
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.956-964
    • /
    • 2005
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery The purpose of this research is to find the factors affecting the performance of paper heat exchanger for exhaust heat recovery, which can be applied directly to the conventional ventilation unit, air-purifier, and air-conditioning system. In this study, thermal performance and pressure loss of the paper heat exchanger are measured and compared at various operating conditions. The effectiveness of sensible, latent and total heat at the face velocity of 0.75 m/s are $77\%,\;47\%\;and\;57\%$ in the cooling condition and $77\%,\;59\%,\;and\;\%$ in the heating condition, respectively. The effectiveness for sensible heat is only affected by velocity. On the other hand, the effectiveness for latent heat is affected. by temperature and relative humidity.

수평식 셸-튜브형 잠열축열조의 축열 및 방열특성에 관한 실험적 연구 (An Experimental Study on Heat Storage and Heat Recovery Characteristics of a Latent Heat Storage Tank with Horizontal Shell and Tube Type)

  • 권영만;서해성;모정하
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.50-59
    • /
    • 2000
  • An experimental study has been carried out in order to investigate the heat storage characteristics for a latent heat storage tank with horizontal shell and tube type. The heat exchanger consisted of horizontal cylindrical capsules with a staggered tube bank layout. Based on the obtained data, the effects of flow rate and inlet fluid temperature on the melting time and heat storage rates were examined. It is found that the melting time decreased with increase of the flow rate and the inlet temperature. Results also show that at the initial stage of heat transfer the heat storage rate represents the maximum value and rapidly decreases.

배기열 회수용 종이 열교환기의 성능예측에 관한 연구 (A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery)

  • 유성연;김진혁;정민호;지명석
    • 설비공학논문집
    • /
    • 제20권6호
    • /
    • pp.372-380
    • /
    • 2008
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used to predict the performance of the paper heat exchanger. Pressure drops at various velocities, and sensible and latent heat transfer rates at various dry-bulb temperatures, relative humidities and specific humidities are measured to derive experimental correlations. The results of prediction using correlations show fairly good agreement with the experimental data obtained in the actual operating conditions.