• Title/Summary/Keyword: Late maturity

Search Result 299, Processing Time 0.036 seconds

Study on the Early Development and Larvae of Limnoperna fortunei (Limnoperna fortunei의 초기발생 및 유생에 관한 연구)

  • Choi, Shin Sok;Shin, Chang Nam
    • The Korean Journal of Malacology
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 1985
  • The maturity of gonads, early development of the fertilized egg, spawning period, and morphogenesis of larvae in Limnoperua fortunei were studied from October, 1981 to November, 1982 as on attempt to identify its life cycle. 1) Active motility of its sperm was observed at late May, and matured egg could be found at late June. 2) It was estimated that the spawning was occured from late August. This species was belong to the short-term breeder because it finished its spawning within 20 days. 3) It has free-living trochophore and D-shaped larva stage. The shell lengths of early, middle, and D-larval stage were $140.0{\mu}m$, $167.6{\mu}m$ and $210.0{\mu}m$, respectively. The shell heigths of each stage were $97.3{\mu}m$, $137.6{\mu}m$ and $178.2{\mu}m$, respectively.

  • PDF

Effect of Growth and Yield of Soybean on Late-Sowing Compared to Optimal Sowing in the Southern Region of South Korea (남부지역에서 콩의 적기파종 대비 후기 파종이 생육과 수량에 미치는 영향)

  • Ye Rin Kim;Jong hyuk Kim;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.61-69
    • /
    • 2024
  • Considering the threats of climate change, this study was conducted to investigate the influence of temperature and day-length on soybean growth and yield when sown late in comparison to the optimal sowing time in the southern region of the Korean Peninsula. Sowing was executed in 10-day intervals, including on July 1, 10, 20 and 30 and August 10, considering that the optimum sowing time of the three soybean varieties with different ecotypes is June 20. Emergence rates did not differ significantly between late-sowing and optimal sowing in all ecotypes; however, the number of days to emergence, flowering, and maturity was smaller after late sowing. A multiple-regression approach was used to test the effect of temperature and day length on the number of growing days after late sowing compared to the optimal sowing time. This analysis revealed that the number of days required from sowing to flowering was positively correlated with both day length and temperature, and the number of days from flowering to harvest was positively correlated with day length and negatively with temperature. A multiple regression equation can be calculated as follows: the number of days required from sowing to flowering (Y) = 3.177 + (0.030 × (sum of day length + sum of temperature)), and the number of days required from flowering to maturity (Y) = 20.945 + (0.021 × (sum of day length + sum of temperature)). Multiple growth parameters were significantly correlated with yield components, depending on growing days. Optimal sowing resulted in the best yield, while later sowing decreased yield compared to optimal sowing. To avoid a significant decrease in yield, early-maturing species should be sown by July 20, while late-maturing species should be sown by July 10.

Comparative Perfonmance of Early and Late Maturing Nili Ravi Buffalo Heifers

  • Naqvi, A.N.;Shami, S.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.336-340
    • /
    • 1999
  • Age at maturity was studied in 661 Nili Ravi buffaloes maintained at six dairy farms in Pakistan. The mean age at maturity in the overall data from the six farms was $976.49{\pm}9.2$ days. Significantly lower mean age at maturity $(957.93{\pm}10.68\;days)$ was observed at Military Dairy Farm, Khyber Okara, Military Daiiy Farm, Punjnad and Livestock Research Station, National Agricultural Research Centre, Islamabad (Group I) compared to $(1015.26{\pm}17.39\;days)$ other three Military Dairy Farms, Peshawar, Nowshera and Rawalpindi (Group II). The advantages associated to early age at maturity were as following. Male and female calves were heavier $(38.35{\pm}0.17\;and\;31.84{\pm}15kg,\;respectively)$ in Group I as compared to $(29.27{\pm}0.26\;and\;26.27{\pm}0.26kg)$ in Group II. Milk yield per lactation was significantly higher in Group I $(1912{\pm}12\;lit.)$ as compared to $(1833.36{\pm}16.56\;lit.)$ in Group II. Lactation length was significantly longer $(284.41{\pm}1.23\;days)$ in Group I as compared to $(277.77{\pm}2.02\;days)$ in Group II. Dry period and service period were significantly shorter $(241.59{\pm}4.18\;and\;217.05{\pm}4.95\;days,\;respectively)$ in Group I as compared to $(306.39{\pm}78\;and\;280.95{\pm}9.32\;days)$ in Group II. The mean age at first calving and sex ratio were low ($1282.75{\pm}10.14$ days and 100 ♀ ♀:130.7 ♂ ♂) in Group I as compared to ($1308.7{\pm}16.44$ days and 100 ♀ ♀:152.15 ♂ ♂) in Group II but the differences were non significant.

Gametogenic Cycle and the Size at 50% of Group Sexual Maturity in Male Chlamys (Azumapecten) farreri nipponensis (Kuroda, 1932) (Bivalvia: Pectinidae) in Western Korea

  • Park, Ki Yeol;Chung, Ee-Yung;Lee, Ki-Young;Park, Kwan Ha
    • The Korean Journal of Malacology
    • /
    • v.29 no.1
    • /
    • pp.65-76
    • /
    • 2013
  • We investigated the gametogenic cycle and spawning seasons of the male Chlamys (Azumapecten) farreri nipponensis by qualitative and quantitative analyses, and also the size at 50% of group sexual maturity was calculated by the data of first sexual maturity. In this study, the male gametogenic cycle of this species by qualitative analysis was divided into five successive stages: early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (July to September), and spent/inactive stage (August to January). The male gametogenic cycle showed similar patterns with monthly changes in the gonadosomatic index and condition index. Particularly, spawning in male scallop occurred once a year from July to September, unlike the spawning period of this species (from June to August) reported by the previous researchers. In quantitative statistical analysis using an image analyzer system, the patterns of monthly changes in the percent (%) of the areas occupied by spermatogenic stages to the testis areas in males showed a maximum in June, and then sharply dropped from July to September, 2006. From these data, it is apparent that the spawning season of C. (A.) farreri nipponensis occurred once per year from July to early September, indicating a unimodal gametogenic cycle during the year. Shell heights at 50% of group sexual maturity (RM50) fitted to an exponential equation were estimated to be 49.90 mm in males (considered to be one year old), and it was 100% for male scallops over 61.0 mm (considered to be two years old).

Growth and Yield Responses of Soybean to Planting Density in Late Planting (남부지방 콩 만파 재배 시 재식밀도에 따른 생육 및 수량변이)

  • Park, Hyeon-Jin;Han, Won-Young;Oh, Ki-Won;Ko, Jong-Min;Bae, Jin Woo;Jang, Yun Woo;Baek, In Youl;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.343-348
    • /
    • 2015
  • Soybean is one of the important food crop around the world. Especially in East Asia, it is the main ingredient for traditional food like soy sauce and soy paste. The double cropping system including soybean following onion, Chinese cabbage, and potato is widely adopted in Southern region of Korea. In this system, sowing date of second crop (soybean) can be delayed depending on first crops' growth period and weather condition. When planting date is delayed it is known that soybean yield is declined because of shorter vegetative growth period and earlier flowering induced by warm temperature and changes in photoperiod. The objective of this study was to determine soybean growth and yield responses as plant populations at late planting date. Field experiment was conducted at Department of Functional Crop, National Institute of Crop Science, RDA located in Miryang, Gyeongsangnam-Do for two years ('13-'14) in upland field with mid-late maturity cultivar Daewon. A split-plot block design was used with three replications. Main plots were three sowing dates from June 20 to July 20 with 15 days intervals, and subplots were 4 levels of planting densities. Data of maturity (R8) was recorded, yield components and yield were examined after harvesting. Experimental data were analyzed by using PROC GLM, and DMRT were used for mean comparison. Optimum planting population for maximizing soybean yield in late planting which compared with standard population. In mid-June planting, higher planting density causes increased plant height and decreased diameter which lead to higher risk of lodging, however, reduced growth period due to late planting alleviated this problem. Therefore higher seeding rates can provide protection against low seedling emergence caused by late planting in this region.

Growth and Maturity in Response to Planting Times in Supernodulating Soybean Mutants

  • Park Sei Joon;Youn Jong Tag;Lee Jae Eun;Kim Wook Han;Kwon Young Up;Shin Jin Chul;Seong Rak Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.11-15
    • /
    • 2005
  • This experiment was conducted to investigate the changes of growth and maturity and to clarify the function of supernodulating characters, excessive nodules and high biological nitrogen fixation rate (BNF), on maturity in response to different planting time in supernodulating soybean mutants. Two supernodulating soybean mutants, Sakukei4 and SS2-2, and their parent cultivars, Enrei and Shinpaldalkong2, were planted on May 24 and June 15, 2004. The degrees of the shortening of growth days by the planting time delay were 18 to 22 days in four cultivar, and there were no significant differences among the cultivars. However, four cultivars showed the different maturity properties. Sakukei4, mutated from Enrei, showed later maturity than that of Enrei, and 882-2, mutated from Shinpaldalkong2, showed earlier maturity than that of Shinpaldalkong2. The plant and nodule dry weights at R6 stage of Sakukei4 showed the smallest decrement and those of SS2-2 was showed the largest decrement by the delay of planting time. The photosynthetic rates of Sakukei4 during the late reproductive growth period were slowly decreased, however those of SS2-2 were steeply decreased in two planting time treatments. Overall, the growth of Sakukei4 was decreased slowly, however the growth of SS2-2 was decreased sharply according to the delay of planting time. The percentage of seed yield of Sakukei4 in June planting plot compared with May planting plot at R8 stage was $92\%$, which was the lowest decreasing rate of yield among the cultivars, and in the case of SS2-2, it was in $76\%$, the highest one. These results indicated that the responses of supernodulating mutants by the delay of planting time were very similar to the wild types. This means supernodulating characters in supernodulating soybean mutants might not affect to the maturity property. Additionally, the maturity property could be considered as an important characteristics to decide or to select on the developments of supernodulating soybean mutants, which have a low productivity by an excessive nodules, especially.

Reproductive Cycle and First Sexual Maturity of Sinonovacula constricta(Lamarck, 1818)(Bivalvia: Pharidae) in Western Korea

  • Kim, Tae-Hoo;Lee, Ki-Young
    • The Korean Journal of Malacology
    • /
    • v.24 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • The gonad index, reproductive cycle and first sexual maturity of Sinonovacula constricta collected from Simpo, Kimje-gun, Korea were investigated by histological analysis. The gonad index(GI) in both sexes of S. constricta increased from April and reached a maximum in July when the water temperature rapidly increased. And then, the GI values gradually decreased by spawning from August through October. Monthly variations in the GI showed a close relationship with ovarian development. The reproductive cycle in females and males can be classified into five successive stages: early active stage(March to June), late active stage(May to July), ripe stage(July to September), partially spawned stage(August to October), spent/inactive stage(October to March). The percentage of first sexual maturations in female and male clams of 50.1-60.0 mm in shell length was over 50%, and for clams over 70.1 mm in shell length, it was 100%. Because harvesting clams < 50.1 mm in shell length could potentially cause a drastic reduction in recruitment, a measure including a prohibitory fishing size should be taken for adequate improved fisheries resource management.

  • PDF

Effect of Nitrogen Fertilization and Stage of Maturity of Mottgrass (Pennisetum purpureum) on its Chemical Composition, Dry Matter Intake, Ruminal Characteristics and Digestibility in Buffalo Bulls

  • Sarwar, M.;Mahr-un-Nisa, Mahr-un-Nisa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1035-1039
    • /
    • 1999
  • Four ruminally cannulated buffalo bulls were fed mottgrass diets using a $4{\times}4$ Latin square design. Treatments were arranged factorially and consisted of mottgrass fertilized with 0 for Kg nitrogen (N) per acre and harvested at 40 and 60 days of age. Nitrogen fertilization improved the concentrations of neutral detergent fiber (NDF), and acid detergent fiber (ADF) in early-cut mottgrass (ECM) but, the acid detergent lignin (ADL) contents were higher in the late-cut mottgrass (LCM). The crude protein (CP) contents of the mottgrass decreased with advancing maturity, but N fertilization increased CP at both maturities. The intake of dry matter (DM), organic matter (OM), CP, NDF and ADF were higher by buffalo bulls fed ECM than those fed LCM. The ruminal pH increased in first 6 hours post feeding in animals fed N fertilized mottgrass and may be due to higher concentration of ruminal ammonia. The digestibilities of DM, OM, CP, NDF and ADF were higher by buffalo bulls fed ECM than those fed LCM. However, the application of N fertilizer did not affect the digestibilities of these nutrients.

Gametogenesis and Reproductive Cycle of the Rock Shell, Reishia (Thais) clavigera (Neogastropoda: Muricidae), on the West Coast of Korea

  • Lee, Ju-Ha
    • Animal cells and systems
    • /
    • v.3 no.4
    • /
    • pp.375-383
    • /
    • 1999
  • Gonadal development, gametogenesis, reproductive cycle, and first sexual maturity of Reishia clavigera were investigated monthly from July 1998 to June 1999 through cytological and histological observations. R. clavigera had separate sexes, and was an internal fertilizer. The ma1e penis was located near the two tentacles. The ovary and testis were composed of a great number of oogenic lobules and spermatogenic tubules, respectively. The size of ripe oocyte ranged from 130 to 140 ${\mu}$m in diameter. The peripheral cytoplasm of the germinal vesicle of the ripe oocyte in many cases were surrounded by smaller yolk granules, while the eccentric cytoplasm was occupied with larger ones. The reproductive cycle of R. clavigera could be classified into five successive stages: early active, late active, ripe, spawning, and recovery. Spawning of females occurred from early July to August when the seawater reached above 24.8$^{\circ}C$. Spawning of males occurred from early June to August in the water above 22.8$^{\circ}C$. Minimum size for sexual maturity of both sexes was above 10.0 mm in shell height. Each egg capsule was a cylinder or spindle in shape, 4-6 mm in length and 1-2 mm in width. Colors of newly spawned egg capsules showed yellowish white or pale yellow, while those with veliger larvae showed pale black, and released larvae or dead egg capsules showed black violet. The fecundity in an egg capsule ranged from 70 to 91 eggs (mean=80.28 eggs).

  • PDF

Effect of Planting Date on Growth and Grain Yield of Vegetable Perilla (파종기가 잎들깨의 생육 및 종실수량에 미치는 영향)

  • 김성택;강영길;고미라;문정수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.434-438
    • /
    • 2001
  • Two late-maturing perilla cultivars for vegetables, ‘Ipdlkkae 1’ and ‘Manbaekdlkkae’, were planted on 15 May, 30 May, 15 June, 30 June, and 15 July in 2000 to determine the optimum planting date for seed production in Jeju Island. Significant interaction between cultivar and planting date was observed for number of days from planting to maturity. There were significant differences between two cultivars for days to flowering. Ipdlkkae 1 flowered two days earlier but matured one day later than Manbaekdlkkae. As planting was delayed from 15 May to 15 July, when averaged across two cultivars, days to flowering and maturity decreased from 137 to 77 days and 179 to 121 days, respectively. As planting was delayed, stem length, number of branches per plant and number of node on the main stem decreased from 150 to 81 cm, 17.0 to 7.3, and 16.9 to 10.3, respectively. Number of clusters per plant decreased 65.6 to 50.7 with delayed planting but number of capsules per cluster was not significantly affected by planting date. With delayed planting, 1,000-grain weight increased 3.2 to 3.9 g, but grain yield decreased from 1,820 to 1,338 kg/㏊. However, there was no significant difference for grain yield between 15 and 30 May plantings. The results of this study suggest that the optimum planting date for seed production of late maturing vegetable perilla may be from early May to late May in Jeju Island.

  • PDF