• Title/Summary/Keyword: Late Quaternary sediments

Search Result 53, Processing Time 0.027 seconds

Late Quaternary Stratigraphy and the Heavy Minerals from Deep Cored Sediments along the Coastal Deposits, Songji Lagoon, Eastern Coast, Korea (강원도 동해안(송지호) 해안퇴적층의 제4기 후기 층서와 중광물)

  • 박용안;박영후
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2001
  • The deep cored sediments of the beach spit deposit in the inlet of the Songji lagoon(lake) have been studied in terms of the late Quarternary stratigraphy and relationship of the Holocene sea-level curve. Furthermore, the total content of heavy mineral sands from the established stratigraphic units(Unit I, II and III) varies due to the changes of depositional environments from continental to marine condition.

  • PDF

The Formative Processes and Ages of Paleo-coastal Sediments in Daepo-dong Sacheon-si in the Southern Coast, South Korea: Evaluation of the Mode and Rate of the Late Quaternary Tectonism (II) (남해안 사천시 대포동 일대에 분포하는 고해안 퇴적물의 형성 과정과 형성 시기: 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(II))

  • Shin, Jaeryul;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.57-70
    • /
    • 2018
  • This study restores onshore paleo-shoreline records and establishes the nature and strain rate of neotectonism by investigating the existence and formative age of paleo-coastal sediments emerged around Sacheon-si in the Southern part of the Korean peninsula. As a result, paleo-sand bars representing 5m of the paleo-shoreline from high tide level are formed in Sacheon-si, and the formation age of these is confirmed as MIS 5c at approximately 100,000 year BP through rock surface luminescence dating to rounded gravels in paleo-sand bars. Although it is difficult to establish the uplift rate of crust precisely due to incomplete restoration of sea level records during the last interglacial stage, the uplift rate along the Southern coast of the peninsula was assumed approximately 0.72 lower than the Eastern coast during the late Quaternary in comparison to the 1st marine terrace along the Eastern coast.

Late Quaternay Paleoceanography as Recorded by Planktonic Foraminifera in the Ulleung Basin, East Sea

  • Kim, Gil-Young;Kim, Dae-Choul;Shin, Im-Chul;Yi, Hi-Il;Kim, Jeong-Chang
    • Journal of the korean society of oceanography
    • /
    • v.33 no.1-2
    • /
    • pp.8-17
    • /
    • 1998
  • Paleoceanographic history of the East Sea is reconstructed based on several environmental parameters (coarse fraction content, planktonic foraminifera/benthic foraminifera ratio, fragmentation and assemblages of planktonic foraminifera, and coiling ratio of Neogloboquadrina pa-chyderma, etc,) of the late Quaternary sediments obtained from the Ulleung Basin. N. pa-chydeyma and Globigerina bulloides are dominant species (greater than 90% in abundance)among the total planktonic foraminifera assemblages in the late Quaternary sediments. The benthic foraminifera rarely occurred throughout the cores. Sinistrally-coiled specimens of N. pa-chyderma representing cold water temperature are observed more abundantly than dextrally-coil-ed ones. In addition, the sinistrally-coiled N, pachydeyma showed more the amount at the lower part of the cores than at the upper part suggesting the restriction of the Tsushima Warm Current into the East Sea during glacial period. G. bulloides, a species representative of upwelling condition, shows more abundant occurrence in the sediments of Core 941013 than those of Core 941006. This implies that Core 941013 is more influenced by upwelling than Core 941006. The upper part of the two cores contain more fragmentation of planktonic foraminifera suggesting significant dissolution by corrosive bottom wafer. Ascending CCD also played an important role for the absence of planktonic foraminifera at the upper part of the cores.

  • PDF

Characteristics and Stratigraphy of Late Quaternary Sediments on a Macrotidal Mudflat Deposit of Namyang Bay, Western Coast of Korea

  • Lim, D. I.;Choi, J. Y.;Jung, H. S.
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.46-60
    • /
    • 2003
  • In Namyang Bay of western Korea, macrotidal-flat deposits are divisible into three late Quaternary units: Unit M1 of upper marine mud, Unit T1 of middle siderite-bearing terrestrial clay, and Unit M2 of lower marine mud. Unit M1 represents typical Holocene intertidal mudflat deposits, showing a coarsening-upward textural trend. It probably resulted from the continual retrogradation of tidal flat during the mid-to-late Holocene sea-level rise. Reddish brown-color Unit T1 consists of homogeneous clay with abundant freshwater siderite grains and plant remains. Unit T1 is clearly separated from the overlying Unit M1 by a sharp lithologic boundary. Radiocarbon age, siderite grains and lithologic features indicate that Unit T1 is originated from freshwater bog or swamp deposition infilling the localized topographic lows during the early Holocene age. Overlain unconformably by early Holocene swamp clay, Unit M2 is orange to yellow in color and mottled, suggesting significant degree of weathering during the sea-level lowstand. Such subaerial oxidation is confirmed in the vertical profiles of geotechnical properties, clay mineral assemblages and magnetic susceptibility. Unit M2 appears to be correlated with the upper part of the late Pleistocene tidal deposits developed along the western Korean coast. The sedimentary succession of the Namyang-Bay tidal-flat deposit provides stratigraphic information for the Holocene-late Pleistocene unconformity and also permits an assessment of the preservation potential of the late Pleistocene marginal marine deposit along the western coast of Korea.

Late Quaternary (Late Pleistocene and Holocene) Stratigraphy and Unconformity in the Kimpo Tidal Deposits, Kyunggi Bay, West Coast of Korea (경기만 김포 조간대 지층의 제 4기 후기 층서)

  • 박용안;최경식;도성재;오재호
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 1999
  • Three deep borings to obtain vertical continuous samples including weathered basement soils (KP-1, KP-2 and KP-3) were carried out in the reclaimed Kimpo tidal flat with purposes to establish late Quaternary stratigraphy. On the basis of detailed observations and descriptions on color, sedimentary structure and textural composition of cored sediments, four lithostratigraphic units are classified. From the stratigraphic top to bottom, they are Holocene tidal sand and muddy deposit (Unit I), early Holocene freshwater marsh muddy deposit (Unit II), late Pleistocene tidal sand and muddy deposit (Unit III) and late Pleistocene basal fluvial gravel deposit (Unit IV). In particular, Unit III is divided into two parts: the upper part-weathered and cryoturbated part during the Last Glacial Maximum (Unit III-a) and the lower part-unweathered tidal sand and muddy deposit (Unit III-b).

  • PDF

Late Quaternary Stratigraphy and Depositional Environment of the Coastal Sediments along Moonamni, Kangwon Province, Korea (강원도 동해안 문암리 해안지층의 제4기 후기 퇴적층서화 환경)

  • 박용안;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The coastal deposits along Moonamni, Kangwon Province, Korea have been investigated by using deeply cored sediments(down to the basement rocks : Pre-Cambrian metamorphic rocks and granitic rocks) in order to understand and propose the late Quaternary stratigraphy and related major unconformities. Three major stratigraphic -depositional units are proposed. The neolithic cultural sites in the Moonamni area are considered as middle Holocene coastal dunes, which were developed due to active supply of beach sands from Unit I(Holocene transgressive deposit). Such coastal dune sediments are characteristic in the upper part of Unit I(Holocene in age). So far, Unit II and Unit III are considered as continental deposits, such as fluvial-swamp and alluvial deposit, respectively.

  • PDF

Stratigraphical and Sedimentological Studies on Core Sediments from the Southwestern Ulleung Basin, East Sea (울릉분지 남서부 해역의 천부퇴적물에 대한 층서$\cdot$퇴적학적 연구)

  • 박명호;류병재;김일수;정태진;이영주;유강민
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • Two piston-core sediments, obtained from the southwestern margin of the Ulleung Basin in East Sea, are analyzed to investigate the stratigraphy and sedimentary environment of the Late Quaternary. The cores consist mainly of cuddy sediments with silty sands, lapilli tephra and ash layers. The chronostratigraphic correlation with known eruption ages reveals that the core sediments contain the stratigraphic document over the past 46.1 kyr and the sedimentation rates during the last glacial period were relatively higher (12.1-14.9 cm/kyr) than those in pelagic ocean. Several sedimentary facies, mainly affected by turbidity currents, are commonly present in the core interval accumulated during the oxygen-isotope stage 2. Many of horizontal voids, which are thought to have formed by gas expansion, are observed in fore 00GHP-07. The total organic carbon (TOC) contents of the core sediments are noticeably high (average 1 .8%). Particularly, these TOC valuers increased during Termination I, suggesting that dering this time interval the sedimentary environment of the study area was changed to more anoxic.

Slope Sedimentation and Organic Carbon Content in the Late Quaternary West Florida Slope Sediments

  • Lee, Eun-Il;Park, Soo-Chul
    • Journal of the korean society of oceanography
    • /
    • v.34 no.3
    • /
    • pp.144-150
    • /
    • 1999
  • Slope sedimentation on the modern west Florida continental margin is controlled by pelagic carbonate accumulation and off-shelf sedimentation of neritic carbonates and terrigenous fines. Production and deposition of pelagic carbonates by planktonic foraminifera and coccoliths have played a significant role in the total slope sedimentation and are mainly promoted by sea-surface productivity. Organic carbon data reflect the relatively high biological productivity in surface waters, indicating high accumulation of biogenic calcareous sediments. The surface-water productivity in the study area is supported by the relation among microfossil assemblages, carbonate mineralogy and sedimentary organic carbon.

  • PDF

Stratigraphy of Late Quaternary Core Sediments and Comparative Study of the Tephra Layers from the Northwestern Ulleung Basin of the East Sea (울릉분지 북서부 해역의 코어퇴적물에 대한 제4기 후기 테프라 층서 및 테프라층 비교 연구)

  • 김일수;박명호;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2003
  • Three piston cores. obtained from the northwestern Ulleung Basin of the East Sea, are analyzed to study the tephrostratigraphy of the late Quaternary core sediments and to reveal the comparative characteristics of the tephra layers. The cores consist mainly of the muddy sediments that are partly interbedded with lapilli tephra and ash layers. The muds are further divided into hemipelagic and turbiditic mud facies. The hemipelagic facies is dominated by bioturbated mud and crudely laminated mud, whereas the turbiditic facies includes mainly thinly laminated mud and homogeneous mud, and often alternates with non-turbiditic muds. According to microscopic observation and EDX analysis, three tephra layers of the Ulleung-Oki (U-Oki; ca. 9.3 ka), Aira-Tanzawa (AT: ca. 22~24.7 ka) and Ulleung-Yamato (U-Ym; ca. 25~33 ka) are identified in the study cores. Among these, the U-Oki and U-Ym layers, originating from the Ulleung Island, consist mainly of massive-type glass shards with alkali feldspar. Both of the tephra layers contain a lower content of SiO$_2$ (57~66.5 wt.%) and a higher content of Na$_2$O+K$_2$O (11~16 wt.%) than the AT layer (SiO$_2$=75~78.5 wt.%, Na$_2$O+K$_2$O=6.5~9 wt.%) that consists of typical plane-type and/or bubble-wall glass grains. Compared with that of the U-Ym layer, a sedimentary facies of the U-Oki layer is very thick and contains three stratigraphic units, probably due to relatively large and different supplies of pyroclastic sediments. Thus, the eruption of Ulleung Volcano (ca. 7,300 B.C.) is thought to have had a more powerful effect on depositional environment than the U-Ym eruption.