• Title/Summary/Keyword: Laser-scanner

Search Result 546, Processing Time 0.026 seconds

4S-Van: A Prototype Mobile Mapping System for GIS

  • Lee, Seung-Yong;Kim, Seong-Baek;Choi, Ji-Hoon;Lee, Jong-Hun
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2003
  • The design of Graphic Information System(GIS) in various applications is suffering from the difficulty of data acquisition, which is labor-intensive and time consuming. In order to provide the spatial data rapidly and accurately, 4S-Van, a prototype mobile mapping system, has been developed. The 4S-Van consists of 1)Global Positioning System(GPS), Inertial Navigation System(INS) for estimating the geographic position and attitude of the moving van, i.e.,(x, y, z) and the direction of the Van, 2) Charge Coupled Device(CCD) camera and laser scanner for capturing images and for measuring depth from geographic objects, and 3) External Synchronization Device(ESD) and industrial PC for synchronizing data from GPS/INS/CCD camera and for storing the data. In this paper, we present the design and implementation of the proto-Dpe 4S-Van system for spatial data acquisition for various GIS applications.

A Deep Convolutional Neural Network Based 6-DOF Relocalization with Sensor Fusion System (센서 융합 시스템을 이용한 심층 컨벌루션 신경망 기반 6자유도 위치 재인식)

  • Jo, HyungGi;Cho, Hae Min;Lee, Seongwon;Kim, Euntai
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

Rajakudakan Wat Chotikaram: From Ruins to The Reconstruction of The Grand Stupa, Wat Chedi Luang, Chiang Mai

  • Kirdsiria, Kreangkrai;Buranautb, Isarachai;Janyaemc, Kittikhun
    • SUVANNABHUMI
    • /
    • v.13 no.2
    • /
    • pp.167-186
    • /
    • 2021
  • The Grand Stupa is mentioned in historical text as 'Rajakudakan', which means a royal building with a multitiered superstructure. This Grand Stupa is the principal construction of Wat Chedi Luang, and marks the center of the Chiang Mai City Plan. This study argues that the Grand Stupa was built in 1391 during Phaya Saen Mueang Ma's reign, possibly inspired by the construction of Ku Phaya in Bagan. Thereafter, in 1545, the Grand Stupa's superstructure collapsed after the great earthquake, resulted in the irreparable damage since then. Therefore, a survey using a 3D laser scanner is conducted to collect the most precise data on the current condition of the Grand Stupa, yielding an assumption of its reconstruction. Other simultaneous stupas or those that show a close architectural relationship (e.g. stupas in Wat Chiang Man and Wat Lok Moli and the stupa of King Tilokaraj in Wat Chet Yot in Chiang Mai) are also employed as research frameworks for the reconstruction. As a result, the architectural research on the Grands Stupa, compared with simultaneous stupas, yields a fruitful argument that the pre-collapse superstructure form of the Grand Stupa marks the most architectural similarity to the stupa of Wat Chiang Man.

Accuracy-based Evaluation of the Utilization of Spatial Information for BIM Application (BIM 적용을 위한 공간정보의 정확도 기반 활용성 평가)

  • Doo-Pyo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.669-678
    • /
    • 2023
  • Recently, spatial information has been applied to various fields and its usability is increasing day by day. In particular, in the field of civil engineering and construction, BIM based on spatial information is being applied to all construction industries and related research has been conducted. BIM is a technology that utilizes spatial information from the design phase and aids in the construction and maintenance of buildings, including the management of their attributes. However, to apply BIM technology to existing buildings, it takes a lot of time and money to produce models based on design drawings along with current surveying. In this study, quantitative and qualitative analysis was conducted to determine the applicability of the acquired data and the applicability of BIM by generating data and analyzing the accuracy using UAV images and ground lidar, which are representative spatial information acquisition methods. Quantitative analysis revealed that TLS (Terrestrial Laser Scanner) showed reliable accuracy in both planar and elevation measurements, whereas unmanned aerial images exhibited lower accuracy in elevation measurements, resulting in reduced reliability. Qualitative analysis indicated that neither TLS nor unmanned aerial images alone provided perfect completeness. However, the combination of both spatial information sources, tailored to specific needs, resulted in the most comprehensive completeness. Therefore, it is concluded that the appropriate utilization of spatial information acquired through unmanned aerial images and TLS holds the potential for application in the fields of BIM and reverse engineering.

TASK PLANNING AND VISUALIZATION SYSTEM FOR INTELLIGENT EXCAVATING SYSTEM

  • Jeong-Hwan Kim;Seung-Soo Lee;Jin-Woong Park;Ji-Hyeok Yoon;Jong-Won Seo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.457-463
    • /
    • 2009
  • The earthwork is essential procedure for all civil engineering projects. Because of its importance in terms of cost and time, it should be managed effectively. In light of this, The Intelligent Excavating System (IES) research consortium has established to improve the productivity, quality and safety of current excavating/earthwork system by the Ministry of Land, Transportation and Maritime Affairs (MLTM) of Korea. This paper summarizes ongoing research aimed at development knowledge and presents a framework of task planning and visualization system for IES. The task planning and visualization system consists of three functions. 1) Using digital terrain model which created by 3D laser scanner, the system can divide it and generates global/local work area so that the excavator can work through the area. 2) In order to operate and/or control the excavator, the system exports the location, paths of boom, arm and bucket data of the excavator to control center. 3) The task planning system is visualized on the computer programming aided-graphic interface which simulates the planned work processes and eventually assists the operator for the control of the excavator. The case study which we have performed, demonstrates the effectiveness of the proposed system.

  • PDF

Mineral Image Analysis Technique (광물이미지 분석 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.353-354
    • /
    • 2021
  • In this study, in order to overcome the limitations of the particle size analysis method using a scanner, a microscope, or a laser, and to reduce the cost, a high-quality sampling of micro minerals is performed using an ultra-high-pixel DSLR camera and a MACRO lens. Using this, digital photos taken of standard mineral particles are analyzed to distinguish the size and shape of mineral particles at the level of grain of sand (a few mm ~ 0.063 mm). In addition, various photographing techniques for the production of three-dimensional images of mineral particles were sought, and an attempt was made to produce learning materials and images for mineral classification.

  • PDF

A study on the 2D floor plan derivation of the indoor Point Cloud based on pixelation (포인트 클라우드 데이터의 픽셀화 기반 건축물 실내의 2D도면 도출에 관한 연구)

  • Jung, Yong-Il;Oh, Sang-Min;Ryu, Min-Woo;Kang, Nam-Woo;Cho, Hun-hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.105-106
    • /
    • 2020
  • Recently, a method of deriving an efficient 2D floor plan has been attracting attention for remodeling of old buildings with inaccurate 2D floor plans, and thus, studies on reverse engineering of indoor Point Cloud Date(PCD) have been actively conducted. However, in the case of a indoor PCD, due to interference of indoor objects, available equipment is limited to Mobile Laser Scanner(MLS), which causes a efficiency reduction of data processing. Therefore, this study proposes an automatic derivation algorithm for 2D floor plan of indoor PCD based on pixelation. First, the scanned indoor PCD is projected on the XY coordinate plane. Second, a point distribution of each pixel in the projected PCD is derived using a pixelation. Lastly, 2 floor plan derivation based on the algorithm is performed.

  • PDF

Physiological and Spectroscopic Changes of Rice by Nitrogen Fertilization Conditions

  • Jung-Il Cho;Dongwon Kwon;Hoejeong Jeong;Wan-Gyu Sang;Sungyul Chang;Jae-Kyeong Baek
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.106-106
    • /
    • 2022
  • An appropriate amount of nitrogen fertilizer input during rice cultivation is essential for rice growth, quality control, and reduction of greenhouse gases in paddy fields. Therefore, it is necessary to develop a technology that can check whether an appropriate amount of fertilizer is applied in paddy fields. In this study, we tried to derive a method for diagnosing nitrogen fertilization level using spectroscopic diagnosis, physiological analysis, and molecular indicator genes. Nitrogen fertilization treatment was performed in a greenhouse by dividing into five treatment conditions: no fertilization (N0), low fertilization (N0.5), standard fertilization (N1.0), excessive fertilization (N1.5), and double fertilization (N2.0), respectively. Growth characteristics analysis was investigated by nitrogen fertilization conditions and growth stages, and the height of the canopy was analyzed using a laser scanner. Physiological and spectroscopic analyses were performed by analyzing chlorophyll and sugar contents and measuring SPAD and leaf spectrometer on rice leaves. In addition, real-time PCR experiment was performed to check the relative expression levels of several known nitrogen metabolism related genes. These results suggest that spectroscopic techniques can be helpful in diagnosing the level of nitrogen fertilization in rice paddy fields.

  • PDF

The Effect of Variations in the Vertical Position of the Bracket on the Crown Inclination (브라켓의 수직적 위치변동에 따른 치관경사도변화에 관한 연구)

  • Chang, Yeon-Joo;Kim, Tae-Woo;Yoo, Kwan-Hee
    • The korean journal of orthodontics
    • /
    • v.32 no.6 s.95
    • /
    • pp.401-411
    • /
    • 2002
  • Precise bracket positioning is essential in modem orthodontics. However, there can be alterations in the vertical position of a bracket due to several reasons. The purpose of this study was to evaluate the effect of variations in the vertical bracket position on the crown inclination in Korean patients with normal occlusion. From a larger group of what was considered to be normal occlusions obtained from the Department of Orthodontics, College of Dentistry, Seoul National University, each of the final 10 subjects (6 males and 4 females, with an average age of 22.3 yews) was selected. The dental models of each of the subjects were scanned three-dimensionally by a laser scanner, and measurements drawn from these were made on the scanned dental casts of the subjects were input into the computer program. From this the occlusal plane and the bracket plane were determined. The tooth plane was then constructed to measure the crown inclination on the bracket plane of each tooth. From a practical standpoint, information was obtained on the extent to which the torque of a tooth would be changed as the bracket position was to be moved vertically (in ${\pm}0.5mm,\;{\pm}1.0mm,\;{\pm}1.5mm$) from its ideal position. A one way analysis of the variance (ANOVA) was used to compare each group of the different vertical distances from the bracket plane on a specific tooth. Duncan's multiple comparison test was then performed. There were statistically significant differences in the crown inclination among the groups of different vertical distances for the upper central incisor, upper lateral incisor, upper canine, upper first and second molars, lower first and second premolars, and lower first and second molars (p<0.05). On the upper anterior teeth, upper molars, lower premolars and lower molars, the resultant torque values due to the vertical displacement of the bracket were different depending on the direction of the displacement, occlusal or gingival. This study implies that the torque of these teeth should be handled carefully during the orthodontic treatment. In circumstances in which the bracket must be positioned more gingivally or occlusally due to various reasons, it would be useful to provide the chart of torque alteration of each tooth referred to in this study with its specified bracket prescription.