• Title/Summary/Keyword: Laser-plasma Interaction

Search Result 27, Processing Time 0.022 seconds

Simulation of Pattern Formation and Solitions in Three-Wave Interactions (세 파동의 상호작용에 의한 패턴 형성 및 솔리톤의 전산모사)

  • Lee Hae Jun;Kim Jin Cheol;Kim Gwang Hun;Kim Jong Uk;Kim Chang Beom;Seok Hui Yong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.42-43
    • /
    • 2003
  • The nonlinear three-wave interaction is an interesting topic having various applications in nonlinear optics, hydrodynamics, acoustic waves, and plasma physics. The resonant interaction between two laser pulses and a plasma wave plays important roles in plasma heating, laser reflection in the inertial confinement fusion (ICF), plasma wakefield generation, and ultra-intense laser pulse amplification and pulse compression using stimulated Raman backscattering (RBS). (omitted)

  • PDF

Interaction of Laser Beam with PZT - Target and Observation of Laser - Induced Plume and Particle Ejection (Laser와 PZT - Target간의 반응과 그에 따른 Plume 형성 및 입자 방출에 관한 연구)

  • Lee, Byeong-U
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.93-102
    • /
    • 1996
  • Laser-induced plume and laser-target interaction during pulsed laser deposition are demonstrated for a lead zirconate titanate (PZT). A KrF excimer laser (wavelength 248nm) was used and the laser was pulsed at 20Hz, with nominal pulse width of 20ns. The laser fluence was~$16J/cm^2,$ with 100mJ per pulse. The laser-induced plasma plume for nanosecond laser irradiation on PZT target has been investigated by optical emission spectra using an optical multichannel analyzer(OMA) and by direct observation of the plume using an ICCD high speed photography. OMA analysis showed two distinct ionic species with different expansion velocities of fast or slow according to their ionization states. The ion velocity of the front surface of the developing plume was about $10^7$cm/sec and corresponding kinetic energy was about 100eV. ICCD photograph showed another kind of even slower moving particles ejected from the target. These particles considered expelled molten parts of the target. SEM morphologies of the laser irradiated targets showed drastic melting and material removal by the laser pulse, and also showed the evidence of the molten particle ejection. The physics of the plasma(plume) formation and particle ejection has been discussed.

  • PDF

Study on the Nonlinear Interaction of Laser with Plasma -Detection of Second Harmonic Light and Brillouin Scattering Light by Means of Spectroscopic Technique- (레이저와 프라즈마와의 비선형상오작용에 관한 연구 -분광법에 의한 제 2고주파와 Brillouin 산람광의 검출-)

  • Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.173-180
    • /
    • 1984
  • The spectra of scattering light fromlaser-produced plasma near its fundamental and second harmonic wavelength were observed respectively by means of spectroscopic technique. The experimental results and the generation mechanism of nonlinear effects such as the second garmonics and the brillouin scattering were analysed theoretically. The spectra of reflected laser light became wider than that of incident laser light. And the peak of spectrum of reflected light shifted to red-side from that of incident light. The second harmonic light is generated from the nonlinear interaction of the incident laser light and the electron plasma wave excited in resonance region by the oblique incidence of laser light to the plasma. The Brillouin backscattering from laser-produced plasmas of hydrogen and deuterium has shown an isotope effect in the red-side region of the generated second harmonic light. This isotope shift is explained by the parametric instability at the cutoff (resonance) region using frequency-and phase-matching conditions of the waves.

  • PDF

Improvement of Proton Beam Quality from the High-intensity Short Pulse Laser Interaction with a Micro-structured Target

  • Seo, Ju-Tae;Yoo, Seung-Hoon;Pae, Ki-Hong;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • Target design study to improve the quality of an accelerated proton beam from the interaction of a high-intensity short pulse laser with an overdense plasma slab has been accomplished by using a two-dimensional, fully electromagnetic and relativistic particle-in-cell (PIC) simulation. The target consists of a thin core part and a thick peripheral part of equivalent plasma densities, while the ratio of the radius of the core part to the laser spot size, and the position of the peripheral part relative to the fixed core part were varied. The positive effects of this core-peripheral target structure could be expected from the knowledge of the typical target normal sheath acceleration (TNSA) mechanism in a laser-plasma interaction, and were apparently evidenced from the comparison with the case of a conventional simple planar target and the case of the transversal size reduction of the simple planar target. Improvements of the beam qualities including the collimation, the forward directionality, and the beam divergence were verified by detailed analysis of relativistic momentum, angular directionality, and the spatial density map of the accelerated protons.

LASER-PRODUED PLASMA AS AN X-RAY SOURCE

  • 김효근
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.64-64
    • /
    • 1991
  • The interaction of high-intensity, focused, nanosecond laser light with matter results in the production of high-temperature plasma, which in turn emits an intense pulse of x rays. The x-ray spectrum consists of strong line components of several keV photon energy and broad continuum. Such an x-ray source provides many advantages over conventional ones for many applications. Pulse nature of the x-ray emission is well-suited for studying transient phenomena and for imaging living biological specimen. Recent experiments have also shown that the laser plasma x ray may be used for x ray lithography. These studies and other applications will be discussed in detail.

  • PDF

Plasma Channel Expansion in a Laser-Induced Plasma (LIP) Using a Focused Laser Beam (집속된 레이저빔에 의한 레이저 유도 플라즈마 채널의 형성 및 팽창에 관한 연구)

  • Kim, Jong-Uk;Kim, Chang-Bum;Kim, Guang-Hoon;Lee, Hae-June;Hyyong Suk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.240-241
    • /
    • 2002
  • Propagation of an intense laser pulse through fully ionized plasma has been an interesting topic in many fields. It includes laser-driven electron accelerators,(1) generation of high harmonics,(2) soft x-ray laser development(3) and so on. Specifically, in the application of laser-driven electron accelerators a large laser-plasma interaction length is required to get sufficient acceleration energy of electron. (omitted)

  • PDF

Monitoring of Laser Material Processing and Developments of Tensile Strength Estimation Model Using photodiodes (광센서를 이용한 레이저 가공공정의 모니터링과 인장강도 예측모델 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.98-105
    • /
    • 2008
  • In this paper, the system for monitoring process of aluminum laser welding was developed using the light signal emitted from the plasma which comes from interaction between material and laser. Photodiode for monitoring system was selected based on the spectrum analysis of light from plasma and keyhole. Behavior of plasma and keyhole was analyzed through the sensor signals. Value of sensor signal represented the light intensity and fluctuation of signal indicated the stability of plasma and keyhole. For the relation between welding condition and sensor signals, the input power and weld geometry greatly effected on the average of each sensor signals. Using the feature values of signals, estimation model for tensile strength of weld was formulated with neural network algorithm. Performance of this model was verified through coefficient of determination and average error rate.

Visualization of Plasma Produced in a Laser Beam and Gas Jet Interaction (레이저와 질소가스 상호충돌로부터 발생되는 플라스마 가시화)

  • Kim Jong-Uk;Kim Chang-Bum;Kim Guang-Hoon;Lee Hae-June;Suk Hy-Yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • In the current study, characteristics of the laser-induced plasma were investigated in a gas filled chamber or in a gas jet by using a relatively low intensity laser $(I\;\leq\;5\;\times\;10^{12}\;W/cm^2)$. Temporal evolutions of the produced plasma were measured using the shadow visualization and the shock wave propagation as well as the electron density profiles in the plasma channel was measured using the Mach-Zehnder interferometry. Experimental results such as the structure of the produced plasma, shock propagation speed $(V_s)$, electron density profiles $(n_e)$, and the electron temperature $(T_e)$ are discussed in this study. Since the diagnostic laser pulse occurs over short time intervals compared to the hydrodynamic time scales of expanding plasma or a gas jet, all the transient motion occurring during the measurement is assumed to be essentially frozen. Therefore, temporally well-resolved quantitative measurements were possible in this study.

  • PDF

Inductively coupled plasma application in CW Laser Propulsion

  • Takayoshi Inoue;Kohei Kojima;Susumu Uehara;Kim, iya-Komurasaki;Yoshihiro Arakawa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.251-256
    • /
    • 2004
  • A concept in which laser-sustained plasmas (LSPs) are combined with inductively coupled plasmas (ICPs) is proposed. The concept is aiming at extensions of operative conditions of a CW laser thruster due to the fact that the ICP has some characteristics which are in contrast to those of LSPs. An estimation confirmed that the concept would effectively work. And a fundamental experiment was conducted. The results showed that the radio frequency magnetic field induced by a alternate current of 13.56 MHz coupled inductively with LSPs, resulting in the enlargement of the plasma region and the attainment of the enthalpy. It is expected that some improvements will enable to transfer the RF power to the work gas more effectively and to demonstrate the synergy effect between the LSPs and the ICPs.

  • PDF

RESEARCH ON LASER-ACCELERATED PROTON GENERATION AT KAERI

  • PARK SEONG HEE;LEE KITAE;CHA YOUNG HO;JEONG YOUNG UK;BAIK SUNG HOON;YOO BYUNG DUK
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.279-286
    • /
    • 2005
  • A prototype of a relativistic proton generation system, based on laser-induced plasma interaction, has been designed and fabricated. The system is composed of three major parts: a fs TW laser; a target chamber, including targets and controls; and a diagnostic system for charged particles and lasers. An Offner-type pulse stretcher for chirped pulse amplification (CPA) and eight pass pre-amplifier are installed. The main amplifier will be integrated with a new pumping laser. The design values of the laser at the first stage are 1 TW in power and 50 fs in pulse duration. We expect to generate protons with their maximum energy of approximately 3 MeV and the flux of at least $10^6$ per pulse using a 10 $\mu$m Al target. A prototype target chamber with eight 8-inch flanges, including target mounts, has been designed and fabricated. For laser diagnostics, an adaptive optics based on the Shack-Hartmann type, beam monitoring, and alignment system are all under development. For a charged particle, CR-39 detectors, a Thomson parabola spectrometer, and Si charged-particle detectors will be used for the density profile and energy spectrum. In this paper, we present the preliminary design for laser-induced proton generation. We also present plans for future work, as well as theoretical simulations.