• 제목/요약/키워드: Laser ultrasound

검색결과 106건 처리시간 0.032초

Nondestructive Characterization of Materials Using Laser-Generated Ultrasound

  • Park, Sang-Woo;Lee, Joon-Hyun
    • International Journal of Reliability and Applications
    • /
    • 제5권1호
    • /
    • pp.1-13
    • /
    • 2004
  • It is recently well recognized that the technique for the one-sided stress wave velocity measurement in structural materials provides measurement in structural materials provides valuable information on the state of the material such as quality, uniformity, location of cracked or damaged area. This technique is especially effective to measure velocities of longitudinal and Rayleigh waves when access to only one surface of structure is possible. However, one of problems for one-sided stress wave velocity measurement is to get consistent and reliable source for the generation of elastic wave. In this study, the laser based surface elastic wave was used to provide consistent and reliable source for the generation of elastic wave into the materials. The velocities of creeping wave and Rayleigh wave in materials were measured by the one-sided technique using laser based surface elastic wave. These wave velocities were compared with bulk wave velocities such as longitudinal wave and shear wave velocities to certify accuracy of measurement. In addition, the mechanical properties such as poisson's ratio and specific modulus(E/p) were calculated with the velocities of surface elastic waves.

  • PDF

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

초음파를 이용한 laser-printed paper의 탈묵 (Deinking of Laser-printed Paper Using Ultrasound)

  • 안병준;백기현
    • 펄프종이기술
    • /
    • 제29권4호
    • /
    • pp.36-44
    • /
    • 1997
  • This experiment was mainly performed with a mechanical treatment using ultrasound. We got the following conclusions : At seven minutes-ultrasonic treatment using nonionic surfactant, yield, brightness and residual ink contents were superior to other treatment, but several strength properties were decreased. On the other hand anionic surfactant was considerably low ink removal efficiency. For ultrasonic treatment using nonionic surfactant, yield and brightness were dropped when temperature was over 4$0^{\circ}C$, but were observed to be insensitive to the pulp consistency and flotation time. In the case of nonionic surfactant, tensile and burst strength were improved when ultrasonic treatment was used comparing to non-treatment, and nonionic surfactant was generally better than anionic surfactant in terms of tensile and burst strength regardless of ultrasound conditions. Several properties were decreased when anionic surfactant was used in comparison with nonionic surfactant except yield, therefore, anionic surfactant. was not proper to be used in this condition.

  • PDF

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

  • Kim, Do-Youn;Cho, Youn-Ho;Lee, Joon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제42권5호
    • /
    • pp.546-551
    • /
    • 2010
  • The objective of this research is to estimate the crack location and size of a carbon steel pipe by using a laser ultrasound guided wave for the wall thinning evaluation of an elbow. The wall thinning of the carbon steel pipe is one of the most serious problems in nuclear power plants, especially the wall thinning of the carbon steel elbow caused by Flow-Accelerated Corrosion (FAC). Therefore, a non-destructive inspection method of elbow is essential for the nuclear power plants to operate safely. The specimens used in this study were carbon steel elbows, which represented the main elements of real nuclear power plants. The shape of the wall thinning was an oval with a width of 120mm, a length of 80mm, and a depth of 5mm. The L(0,1) and L(0,2) modes variation of the ultrasound guided wave signal is obtained from the response of the laser generation/air-coupled detection ultrasonic hybrid system represent the characteristics of the defect. The trends of these characteristics and signal processing were used to estimate the size and location of wall thinning.

Endoscopic ultrasound-guided needle-based confocal laser endomicroscopy for pancreatic cystic lesions: current status and future prospects

  • Clement Chun Ho Wu;Samuel Jun Ming Lim;Damien Meng Yew Tan
    • Clinical Endoscopy
    • /
    • 제57권4호
    • /
    • pp.434-445
    • /
    • 2024
  • Pancreatic cystic lesions (PCLs) have increased in prevalence due to the increased usage and advancements in cross-sectional abdominal imaging. Current diagnostic techniques cannot distinguish between PCLs requiring surgery, close surveillance, or expectant management. This has increased the morbidity and healthcare costs from inappropriately aggressive and conservative management strategies. Endoscopic ultrasound (EUS) needle-based confocal laser endomicroscopy (nCLE) allows for microscopic examination and delineation of the surface epithelium of PCLs. Landmark studies have identified characteristics distinguishing various types of PCLs, confirmed the high diagnostic yield of EUS-nCLE (especially for PCLs with an equivocal diagnosis), and shown that EUS-nCLE helps to change management and reduce healthcare costs. Refining procedure technique and reducing procedure length have improved the safety of EUS-nCLE. The utilization of artificial intelligence and its combination with other EUS-based advanced diagnostic techniques would further improve the results of EUS-based PCL diagnosis. A structured training program and device improvements to allow more complete mapping of the pancreas cyst epithelium will be crucial for the widespread adoption of this promising technology.

초음파 서모그라피를 이용한 용접 결함 검사 (A Welding Defect Inspection using an Ultrasound Excited Thermography)

  • 조재완;정진만;최영수;정승호;정현규
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.148-150
    • /
    • 2006
  • In this paper, the applicability of an UET(ultrasound excited thermography) for a defect detection of the welded receptacle is described. An UET(ultrasound excited thermography) is a defect-selective and fast imaging tool for damage detection. A high power ultrasound-excited vibration energy with pulse durations of 280ms is injected into the outer surface of the welded receptacle made of Al material. An ultrasound vibration energy sent into the welded receptacle propagate inside the sample until they are converted into the heat in the vicinity of the defect. The injection of the ultrasound excited vibration energy results in heat generation so that the defect is turned into a local thermal wave transmitter. Its local heat emission is monitored by the thermal infrared camera. And they are processed by the image recording system. Measurement was performed on aluminum receptacle welded by using Nd:YAG laser. The observed thermal image revealed two area of defects along the welded seam.

  • PDF