• Title/Summary/Keyword: Laser surface texturing

Search Result 39, Processing Time 0.024 seconds

Improvement of Tribological Characteristics of Multi-Scale Laser-Textured Surface in terms of Lubrication Regime (윤활영역에서 멀티크기 Laser Surface Texturing 효과)

  • Kim, Jong-Hyoung;Choi, Si Geun;Segu, Dawit Zenebe;Jung, Yong-Sub;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Laser Surface Texturing(LST) is a surface engineering process used to improve tribological characteristics of materials by creating patterned microstructures on the mechanical contact surface. In LST technology, a pulsated laser beam is used to create arranged dimples on a surface by a material ablation process, which can improve such as load capacity, wear resistances, lubrication lifetime, and reduce friction coefficients. In the present study, the effect of multi-scale LST on lubricant regime was investigated. A pulsed Nd:YAG laser was applied on the bearing steel(AISI 52100) to create arranged dimples. To optimize the surface texturing effect on friction, multi-scale texture dimples with some specific formula arrays were fabricated by combining circles, ellipses and the laser ablation process. The tribological testing of multi-scale textured surface was performed by a flat-on-flat unidirectional tribometer under lubrication and the results compared with that of the non-textured surface. Through an increase in sliding speed, the beneficial effect of multi-scale LST performance was achieved. The multi-scale textured surface had lower friction coefficient performances than the non-textured surface due to the hydrodynamic lubrication effect.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 3 - Effect of Number of Dimples (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제3보 - 딤플 수의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.302-307
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied recently to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, numerical analysis is carried out to investigate the effect of number of dimples on the lubrication characteristics of parallel thrust bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure distributions of present analysis are physically consistent than those obtained from numerical analysis of Reynolds equation. The overall lubrication characteristics are highly affected by number of dimples and their locations. The results can be use in design of optimum dimple characteristics to improve thrust bearing performance and further researches are required.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

The Effect of Surface Micro Texturing on Friction and Wear of Polyoxymethylene (POM 마찰 및 마모에 대한 마이크로 표면 텍스처링의 영향)

  • Lee, Jae-Bong;Cho, Min-Haeng
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.141-149
    • /
    • 2009
  • The effect of micro-cavities fabricated using laser surface texturing (LST) technique on polyoxymethylene (POM) surface was studied in terms of heat affected zone (HAZ), cavity geometry, surface roughness, deformation of cavity along with sliding cycles, and tribological characteristics. Cavity process parameters were lamp current, process time, and the stream of air used to minimize the flow of molten polymer into cavity. Especially, the deformation of cavity geometry was extensively studied to provide deep insight into morphological analysis of the cavities. Also, this paper presents the behavior of friction and wear of POM specimens as a function of sliding cycles.

Surface Texturing for Low Friction Mechanical Components

  • Iqbal, K. Y. Mohd;Segu, D. Z.;Pyung, H.;Kim, J. H.;Kim, S. S.
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.287-293
    • /
    • 2015
  • Laser surface texturing (LST), a surface engineering modification, has been considered as one of the new processes used to improve tribological characteristics of materials by creating artificially patterned microstructure on the contact surface of mechanical components. In LST technology, the laser is optimized to obtain or manufacture the dimples with maximum precision. The micro-dimples reduce the coefficients of friction and also improve the wear resistance of materials. This study investigates the effect of dimple density is investigated. For this purpose, a ball-on-disc type tester is used with AISI 52100 bearing steel as the test material. Discs are textured with a 5% and 10% dimple density. Experimental work is performed with normal loads of 5 N, 10 N, and 15 N under a fixed speed of 150 rpm at room temperature. The effect of the textured surface is compared to that of the untextured one. Experimental results show that the textured surface yields lower friction coefficients compared to those of untextured surfaces. Specifically, the 10% dimple density textured surface shows better friction reduction behavior than the 5% dimple density textured sample, and has an 18% improvement in friction reduction compared with the untextured samples. Microscopic observation using a scanning electron microscope (SEM) shows that the major friction mechanisms of the AISI 52100 bearing steel are adhesion, plastic deformation, and ploughing.

LASER TEXTURING PROCESS FOR THE STRIP CASTING ROLL (스트립 캐스팅 공정 및 레이저를 이용한 롤 표면처리 방법)

  • Kim, Y.H.;Joo, M.G.;Park, C.M.;Choi, J.T.;Lim, Choong-Soo;Uh, Ji-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2383-2385
    • /
    • 2001
  • Laser texturing process for the strip casting-roll is investigated and is realized using PC system and Argon Ion Laser. This laser system can imprint any dimple of patterns on the roll-surface with the resolution of ${\mu}m$ unit.

  • PDF

Experimental Study on Friction Characteristics of Metal Surface Treated by LST (레이저 표면처리 된 금속의 마찰특성에 관한 실험적 연구)

  • Park, Sung-Yong;Min, Joon-Won;Lee, Eun-Gil;Chu, In-Gil
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • The studies on the fine processing on the surface of the metal utilizing the technique for LST (Laser surface texturing) have been performed recently. This study has acquired the lower frictional coefficient and endurance in the harsh environment of motion in the low lubricating range of low frictional coefficient in addition to storing of lubricant through fine processing on the frictional part of metal.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

Characteristics of micro-dimple formed on polyoxymethylene surface by Nd:YAG laser texturing technique (Nd:YAG 레이저를 이용한 polyoxymethylene 표면의 마이크로 딤플가공 및 특성에 관한 연구)

  • Cho, Min-Haeng;Lee, Jae-Bong;Lee, Seong-Hyuk;Kim, Joo-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.193-197
    • /
    • 2008
  • Array of micro-dimple on polyoxymethylene (POM) surface was fabricated using Q-switched Nd:YAG laser and its characteristics were studied in terms of heat affected zone (HAZ), dimple geometry, and the effect of specimen surface roughness. Process parameters such as lamp current, process time, and the stream of air in order to minimize HAZ and flow of molten polymer into cavity were extensively studied in this work. Dimple geometry was further investigated by 3-D optical microscopy to provide deep insight into morphological analysis near the dimples. This paper also presents the applicapability of micro-dimples in polymeric tribological system, such as a thrust bearing. Micro-dimples were expected to provide low coefficient of friction and enhanced lubricity at the sliding interface.

  • PDF

Smart Surface Texturing Implant Stem for Enhancement of Osteoblast Cell Biocompatibility (골육세포 성장 촉진을 위한 스마트 써피스 텍스처링 임플란트 스템 제작 기술)

  • Kim, Kyunghan;Lee, Jaehoon;Park, Jongkweon;Jin, Sukwon;Choi, Wanhae;Lee, Hongjin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.375-380
    • /
    • 2014
  • To enhance biocompatibility between the orthopedic implant stem and obsteoblast cells, bone-forming cells, micro-size holes are patterned in Ti plate surface. Initially, the house built laser power stabilization system is applied to the laser micro patterning machine to convince repeatable result. Various pulse widths are irradiated Ti plate and relationship between diameters of patterned holes and pulsed width is derived. Effect of multi pulse is observed and optimal pulse number is considered to avoid heat affected zone. After MG-63 osbeoblast cells are cultured, micro patterned Ti plates are compared with control plates. In SEM image, cells are well aligned and aggregation is observed in both 60, and $100{\mu}m$ patterned plates. Finally, free form surface stem model is prepared to test micro hole patterning.