• Title/Summary/Keyword: Laser output

Search Result 777, Processing Time 0.026 seconds

The optimization of output coupler reflectivity of high repetitive pulsed Nd:YAG laser system adopted 3-mesh parallel sequential charge and discharge method (3단 병렬 충.방전 방식을 적용한 고반복 펄스형 Nd:YAG 레이저 출력거울 반사율의 최적화)

  • 김휘영;홍수열;김동수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 2001
  • The optimization of resonator and laser power supply has been considered to be significant for improving the efficiency of a pulsed Nd:YAG laser system. We have proposed a new method of 3-mesh parallel sequential charge and discharge circuit as a laser power supply; more compact than conventional power supply, competitive in price, easy to control the laser power density according to various material processing, and equipped with the optimum reflectivity of output coupler. In this study, we could find that the maximum laser output was obtained by using 85% of reflectivity in the case of 50[W]-class. In addition using the power supply of new method, it's possible to charge each capacitor bank with a higher energy within the given charging time adopted a new method mentioned above; namely, we can allow each capacitor to have much more charging time and storage energy. So, higher laser output was obtained than conventional power supply.

  • PDF

Output Characteristics of KrF Excimer Laser Pumped $H_2/D_2$ Raman Laser (KrF 엑시머 레이저 펌핑 $H_2/D_2$ 라만레이저의 출력 특성)

  • 이용우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, we have investigated the output characteristics of the Stokes Raman laser in hydrogen, deuterium, and their mixed gases as a function of the incident pump energy and gas pressure using KrF excimer laser as pumping source for generating the differential absorption lidar (DIAL) wavelengths suitable in measuring the ozone concentration of the troposphere. The optimization results of compact excimer-Raman laser transmitter in DIAL system for the tropospheric ozone sounding at the 292 nm/319 m and 292 nm/313 nm wavelength pairs are presented. for the ozone sounding in the 4-12 km range, it has been demonstrated that the design of transmitter for DIAL lidar may be significantly simplified by the use of 292 nm/319 nm wavelength pair. The investigations of Raman scattering in the mixture of hydrogen and deuterium gases have shown that such mixture may be efficiently used for developing the multi- wavelength light sources for DIAL systems.

  • PDF

Development of TEA $CO_2$ Laser Excited by a Magnetic Switch Pulse Source (자기 스위치 펄스 전원을 이용한 TEA $CO_2$ 레이저 개발)

  • Hong, J.U.;Park, D.I.;Lee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.657-659
    • /
    • 1993
  • We have developed a repetitive TEA $CO_2$ laser excited by a magnetic switch pulse source, and have measured the laser output energy for the mixing ratio of the laser gas mixture in single pulse. As a result of experiments, we have obtained the laser output energy of 252 mJ($\eta_{intrinsic}$=7.8%) in $CO_2:N_2$:He=1:1:8(1 atm.). At a repetition-rate frequency of 10 Hz, an average laser power of 1.5 W was obtained.

  • PDF

40-W 200-ns 300-kHz Thulium-doped Fiber Laser at 2050 nm

  • Shin, Jae Sung;Cha, Yong-Ho;Chun, Byung Jae;Park, Hyunmin
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.544-553
    • /
    • 2021
  • A 40-W 200-ns 300-kHz thulium-doped fiber laser at 2050 nm with a master oscillator power amplifier configuration was developed, for application to lithium-isotope separation. The master oscillator generated a 5.35 W continuous-wave beam, which the pulse generator then broke into 200-ns pulses at 300 kHz. Then, the laser beam was amplified by passing through a two-stage amplifier. The output power finally obtained was 42.0 W at 2050 nm, and was stable for a long time, over 2 hours. In spite of this achievement, mode instability was observed in the output beam. This can be solved in the future by using a method such as tight coiling.

The high repetition operating characteristics of pulsed Nd:YAG laser by parallel mesh and alternating charge-discharge system (병렬 메쉬 및 교번 충.방전 방식에 의한 펄스형 Nd:YAG 레이저의 고반복 동작특성에 관한 연구)

  • Park, K.R.;Kim, B.G.;Hong, J.H.;Kim, W.Y.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1060-1062
    • /
    • 1999
  • Pulsed Nd:YAG laser is used widely for materials processing and instrumentation. It is very important to control the laser energy density in materials processing by a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this study, the alternating charge-discharge system was designed to adjust a pulse repetition rate. And the parallel mesh is added to increase laser output power. This system is controlled by one chip microprocessor and allows to replace an expensive condenser for high frequency to a cheap condenser for low frequency. In addition, we have investigated the current pulse shape of flashlamp and the operating characteristics of a pulsed Nd:YAG laser. As a result, it is found that the laser output of the power supply using the parallel mesh and the alternating charge-discharge system is not less than that of typical power supply. As the pulse repetition rate rises from 10pps to 110pps by the step of 20pps at 1000V and 1200V, it is found that the laser efficiency decreases but the laser output power increases about 5W at each step.

  • PDF

Analysis of Polarization Properties of Optical Isolator for Fiber Laser

  • Kim, Tae-Gon;Cheon, Min-Woo;Park, Yong-Pil;Cho, Kyung-Jae;Kang, Sung-Hak
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.241-244
    • /
    • 2011
  • An isolator transmits light in the forward direction and blocks light from passing in the reverse direction. It is regarded an essential optical component in medical, industrial, and research lasers for blocking reflection beams that cause optical damage and noise. It is also used as a communicative light intensifier to expand the lifespan of devices and enhance transmission quality. This study analyzed the characteristics of the core components in the construction of a polarization-independent isolator, namely, the walk-off polarizer and the Faraday rotator. Measurement of the extinction ratio of the resultant walk-off polarizer revealed that the ratio between the vertical and horizontal rays was 1,050:1 with a laser output of 0.032 W and 1,010:1 with a laser output of 2.68 W, thus presenting ratios similar to 1,000:1. In addition, the walk-off polarizer and Faraday rotator constructed in this study were used to compare output changes according to changes in power of input light and to check the penetration ratio. Results from the study presented variations in output value according to changes in power of input light. However, the average penetration ratio remained relatively consistent (~81.4%).

Thermal Lens Compensation in a Fiber-Coupled Laser-Diode Pumped Ceramic Nd:YAG Laser (광섬유 연결 반도체레이저 여기 세라믹 Nd:YAG 레이저에서 열렌즈 효과의 보상)

  • Kim, Duck-Lae;Kim, Yeong-Sik;Kim, Byung-Tai
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.208-215
    • /
    • 2007
  • A fiber-coupled laser-diode pumped ceramic Nd:YAG laser for compensating the thermal tensing effect was developed. The thermal tensing effect was compensated using a convex lens, which was 25 mm away from the laser rod, with a focal length of 30 mm and an effective clear aperture of 22 mm. Without a compensator, the laser output power decreased suddenly above a pump power of 6 W. Using a compensator, the laser output power increased linearly according to the pump power. The beam propagation factor $M^{2}$ was 2.4 under a pump power of 12 W.

High Repetition Wavelength-locked 878.6 nm LD Dual-end-pumped Nd:YVO4 1064 nm Laser

  • Li, Yue;Yu, Yong-Ji;Wang, Yu-Heng;Liu, Hang;Liu, He-Yan;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.582-588
    • /
    • 2018
  • A $Nd:YVO_4$ laser dual-end-pumped by a wavelength-locked 878.6 nm laser diode is presented. At the repetition rate of 500 KHz, the absorbed pump power of 58 W, an output power of 26.1 W at 1064 nm is obtained, corresponding to an optical-optical efficiency of 45%. The pulse width is 44.2 ns. Meanwhile, the effects of traditional 808 nm pumping and 878.6 nm dual-end-pumping on the output laser beam quality and pulse width are compared and analyzed in an experiment.

Experimental Investigation of a High-repetition-rate Pr3+:YLF Laser with Single-frequency Oscillation

  • Dai, Weicheng;Jin, Long;Dong, Yuan;Jin, Guangyong
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.721-729
    • /
    • 2021
  • We demonstrate a Pr3+:YLF 639.7-nm laser with single-frequency output based on the Q-switched pre-lase technology, pumped by a fiber-coupled GaN blue laser diode. The pre-lase technology is realized by the step-type loss of the acousto-optical Q-switched device. The conclusions of the theoretical research are verified experimentally. The mode-suppression ratio was 44 dB at the single-frequency laser output. Detection by interferometer verified the realization of the stable single-frequency laser. In addition, the emission spectrum had a linewidth of 139.9 MHz, measured by Fabry-Perot interferometer. The single-frequency laser's single-peak power was over 19.7 W with 98.8-ns pulse duration, obtained under an absorption power of 1.74 W.