• Title/Summary/Keyword: Laser hybrid welding

Search Result 103, Processing Time 0.02 seconds

Study on the Laser Hybrid Welding Technology for Shipbuilding (레이저 하이브리드 용접기술의 조선 적용)

  • 김형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.699-703
    • /
    • 2004
  • 레이저 용접 기술은 종래의 기법에 비해 용접변형을 최소화하면서 고속용접이 가능하기 때문에 여러 분야에서 다양하게 적용되고 있다. 주로 전자, 자동차 부품 등의 용접 분야에 적용이 되고 있으나 고출력 레이저의 안정화. 와이어 첨가 레이저 용접. 레이저 아크 하이브리드 용접. 레이저 플라즈마 하이브리드 용접 등의 다양한 기술이 개발되면서 중공업. 조선 산업 분야 등에서도 적용이 확대되고 있다. 선박생산 분야에서 경량화와 생산성 증가 등의 목적으로 생산라인에 레이저 또는 레이저 하이브리드 용접을 적용하고 있다. (중략)

Effects and Application Cases of Injection Molds by using DED type Additive Manufacturing Process (DED방식의 적층가공을 통한 금형으로의 응용사례 및 효과)

  • Kim, Woosung;Hong, Myungpyo;Kim, Yanggon;Suh, Chang Hee;Lee, Jongwon;Lee, Sunghee;Sung, Ji Hyun
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.10-14
    • /
    • 2014
  • Laser aided Direct Metal Tooling(DMT) process is a kind of Additive Manufacturing processes (or 3D-Printing processes), which is developed for using various commercial steel powders such as P20, P21, SUS420, H13, D2 and other non-ferrous metal powders, aluminum alloys, titanium alloys, copper alloys and so on. The DMT process is a versatile process which can be applied to various fields like the mold industry, the medical industry, and the defense industry. Among of them, the application of DMT process to the mold industry is one of the most attractive and practical applications since the conformal cooling channel core of injection molds can be fabricated at the slightly expensive cost by using the hybrid fabrication method of DMT technology compared to the part fabricated with the machining technology. The main objectives of this study are to provide various characteristics of the parts made by DMT process compared to the same parts machined from bulk materials and prove the performance of the injection mold equipped with the conformal cooling channel core which is fabricated by the hybrid method of DMT process.

Fabrication and Transmission Experiment of the Distributed Feedback Laser Diode(DFB-LD) Module for 2.5Gbps Optical Telecommunication System (2.5Gbps 광통신용 distrbuted feedback laser diode(DFB-LD) 모듈 제작 및 광송신 실험)

  • 박경현;강승구;송민규;이중기;조호성;장동훈;박찬용;김정수;김홍만
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 1994
  • We designed and fabricated the single mode fiber pigtailed DFB-LD module for 2.5 Gbps optical communication system. In the design of the DFB-LD module, we made the module divided into two parts of inner sub-module and outer 14-pin butterfly package and cylindrical shaped sub-module contain quasi confocal 2 lens system including optical isolator and electrical connection between these parts via hybrid substrate of bias T circuit. Laser welding was used to assemble the sub-module which requires accurate fixing between optical elements. The fabricated DFB-LD module showed optical coupling efficiency of 20% and - 3 dB small signal response of more than 2.6 GHz. We confirmed mechanical reliability of the module by temperature cycle test where the tested module exhibit optical power fluctuation of less than 10%. Finally we evaluated the performance of the fabricated DFB-LD module as light source of 2.5 Gbps optical communication system, sensitivity of - 30.2 dBm was obtained through 47 km optical fiber transmission under the criterion of $1\times10^{-10}$ BER and transmission penalties were 1.5 dB caused by extinction ratio and 1.0 dB caused by chromatic dispersion of normal single mode fiber. fiber.

  • PDF