• Title/Summary/Keyword: Laser droplets

Search Result 69, Processing Time 0.022 seconds

Comparison of Dynamic Behavior of Droplet Mean Diameter with 2holes-2sprays and 4holes-2sprays Types Injector for Gasoline Engine (가솔린 엔진용 2홀 2분류와 4홀 2분류 타입 인젝터의 액적 평균 직경의 동적 거동 비교)

  • Kim, Beom-Jun;Cho, Dae-Jin;Yoon, Suck-Ju
    • Journal of ILASS-Korea
    • /
    • v.11 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The influence of fuel spray characteristics on engine performance has been known as one of the major concerns to Improve fuel economy and to reduce exhaust emissions. In general, the UBHC(Unburned Hydrocarbon) emission could be reduced by decreasing the droplet size of the fuel sprays. In PFI (Port Fuel Injection) gasoline engines, the mixture of air and fuel would not be uniform under a certain condition, because the breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve sheat. In this study, were investigated the transient spray characteristics and dynamic behavior of droplets from 2holes-2sprays and 4holes-2sprays type injectors used in PFI gasoline engine. Mean droplet size and optical concentration were measured by LDPA (Laser Diffraction Particle size Analyzer). The variation of droplet mean diameter and optical concentration were measured for understanding the behavior of unsteady spray.

  • PDF

Unsteady spray characteristics of two-holes two-sprays type injectorin PFI gasoline engine (PFI용 2홀 2분무 인젝터의 비정상 분무 특성)

  • Kim, B.J.;Lee, J.H.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI (Port Fuel Injection) gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from 2hole 2spray type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

  • PDF

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

Unsteady Intermittent Spray Characteristics of PEI Gasoline Injector (PEI용 가솔린 인젝터의 비정상 간헐 분무 특성)

  • Kim Beomjun;Lee Jaiho;Cho Daejin;Yoon Suckju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.64-74
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from two-holes two-sprays type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

The Study on Two-color PIV Algorithm for a Measurement of Droplet Velocity (액적의 속도 측정을 위한 이색 PIV 알고리즘 연구)

  • Lee, K.H.;Lee, C.S.;Oh, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1999
  • It has been known that spray characteristics have an important effect on the mixture formation and directly influence the engine performances and the emissions. Up to now, the measurement of droplet size is well developed such as PDPA and PMAS though the behavior of small droplets during secondary atomization is not clear. Particle image velocimetry(PIV), a planar measuring technique, is a very efficient tool for studying complicated behavior and a fast and reliable method to track numerous droplets during injection. In this study, two-color scanning PIV is designed to obtain quasi-instantaneous two dimensional velocity data by using he-ion laser, rotating mirror and beam splitter. This PIV method which has high temporal and spatial resolution provides the information about the small complex droplet behavior.

  • PDF

Liquid Atomization and Spray Characteristics in Electrostatic Spray of Twin Fluids (2유체 정전분무의 액체 미립화 및 분무 특성)

  • Kim, Jeong-Heon;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1552-1560
    • /
    • 2001
  • This paper presents the experimental results of a study undertaken to develop an electrostatic spray system for a combustion application. The characteristics of the liquid atomization and the droplet dispersion in the electrostatic spray of twin fluids were investigated by the optical measurement techniques. The processes associated with the break-up of charged jets were also observed using the laser sheet visualization. The diameter and velocity of droplets were simultaneously measured using the phase Doppler measurement technique. The electrostatic atomization of the liquid fuel depended primarily on the charging voltage and the flow rate, but the dispersion of droplets depended significantly on the aerodynamic flow. Aerodynamic influences on the liquid atomization decreased with an increase of the charging voltage. Consequently, the liquid atomization and the droplet dispersion could be independently controlled using the electrostatic and aerodynamic mechanisms.

Comparison of Emulsion-stabilizing Property between Sodium Caseinate and Whey Protein Concentrate: Susceptibility to Changes in Protein Concentration and pH

  • Surh, Jeong-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.610-617
    • /
    • 2009
  • The stability of corn oil-in-water emulsions coated by milk proteins, sodium caseinate (CAS), or whey protein concentrate (WPC), was compared under the environmental stress of pH change. Emulsions were prepared at 0.1 of protein:oil because the majority of droplets were relatively small ($d_{32}=0.34$ and $0.35\;{\mu}m$, $d_{43}=0.65$ and $0.37\;{\mu}m$ for CAS- and WPC-emulsions, respectively) and there was no evidence of depletion flocculation. As the pH of the emulsions was gradually dropped from 7 to 3, there was no significant difference in the electrical charges of the emulsion droplets between the 2 types of emulsions. However, laser diffraction measurements, microscopy measurements, and creaming stability test indicated that WPC-emulsions were more stable to droplet aggregation than CAS-emulsions under the same circumstance of pH change. It implies that factors other than electrostatic repulsion should contribute to the different magnitude of response to pH change.

Spreading and retraction dynamics of a liquid droplet impacting rough hydrophobic surfaces: Formation of micrometer-sized drops (거친 발수 표면에 충돌하는 유체 방울의 팽창 및 수축 역학: 미세 유체 방울의 형성)

  • Kim, Uijin;Kim, Jeong-Hyun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.15-21
    • /
    • 2021
  • In this study, we investigated the dynamics of a droplet impacting rough hydrophobic surfaces through high-speed imaging. Micrometer-sized structures with grooves and pillars were fabricated on smooth Polydimethylsiloxane (PDMS) surfaces by laser ablation. We used Newtonian and non-Newtonian liquid droplets to study the drop impact dynamics. De-ionized water and aqueous glycerin solutions were used for the Newtonian liquid droplet. The solutions of xanthan gum in water were prepared to provide elastic property to the Newtonian droplet. We found that the orientation of the surface structures affected the maximal spreading diameter of the droplet due to the degree of slippage. During the droplet retraction, the dynamic receding contact angles were measured to be around 90° or less. It resulted in the formation of the micro-capillary bridges between the receding droplet and the surface structures. Then, the rupture of the capillary bridge led to the formation of micrometer-sized droplets on top of the surface structures. The size of the microdroplets was found to increase with increasing the impacting velocity and viscosity of the Newtonian liquid droplets. However, the size of the isolated microdroplets decreased with enhancing the elasticity of the droplets, and the size of the non-Newtonian microdroplets was not affected by the impacting velocity.

Application of DFB Diode Laser Sensor to Reacting Flow (II) - Liquid-Gas 2-Phase Reacting Flow -

  • Park, Gyung-Min;Masashi Katsuki;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.139-145
    • /
    • 2003
  • Diode laser sensor is conducted to measure the gas temperature in the liquid-gas 2-phase counter flow flame. C$\_$10/H/ sub 22/ and city gas were used as liquid fuel and gas fuel, respectively. Two vibrational overtones of H$_2$O were selected and measurements were carried out in the spray flame region stabilized the above gaseous premixed flame. The path-averaged temperature measurement using diode laser absorption method succeeded in the liquid fuel combustion environment regardless of droplets of wide range diameter. The path-averaged temperature measured in the post flame of liquid-gas 2-phase counter flow flame showed qualitative reliable results. The successful demonstration of time series temperature measurement in the liquid-gas 2-phase counter flow flame gave us motivation of trying to establish the effective control system in practical combustion system. These results demonstrated the ability of real-time feedback from combustor inside using the non-intrusive measurement as well as the possibility of application to practical combustion system. Failure case due to influence of spray flame was also discussed.

Electrochemical Characteristics of HA Film on the Ti Alloy Using Pulsed Laser Deposition

  • Jeong, Yong-Hoon;Shin, Seung-Pyo;Chung, Chae-Heon;Kim, Sang-Sub;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.395-400
    • /
    • 2012
  • In this study, we have investigated the surface morphology of hydroxyapatite (HA) coated Ti alloy surface using pulsed laser plating. The HA (tooth ash) films were grown by pulsed KrF excimer laser, film surfaces were analyzed for topology, chemical composition, crystal structure and electrochemical behavior. The Ti-6Al-4V alloy showed ${\alpha}$ and ${\beta}$ phase, Cp-Ti showed ${\alpha}$ phase and the HA coated surface showed HA and Ti alloy peaks. The HA coating layer was formed with $1-2{\mu}m$ droplets and grain-like particles, particles which were smaller than the HA target particle, and the composition of the HA coatings were composed of Ca and P. From the electrochemical test, the pitting potential (1580 mV) of HA coated Ti-6Al-4V alloy was higher than those of Cp-Ti (1060 mV) and HA coated Cp-Ti (1350 mV). The HA coated samples showed a lower current density than non-HA coated samples, whereas, the polarization resistance of HA coated samples showed a high value compared to non-HA coated samples.