• 제목/요약/키워드: Laser desorption/ionization

검색결과 249건 처리시간 0.019초

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man;Ahn, Sung Hee;Bae, Yong Jin;Kim, Myung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.907-911
    • /
    • 2013
  • Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.

SOLVING BIOANALYTICAL PROBLEMS BY THE METHOD OF MATRIX-ASSISTED LASER DESORPTION IONIZATION MASS SPECTROMETRY (MALDI-MS)

  • Zhao, Shankai;Zhong, Feng;Zhu, Zhihua
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.865-868
    • /
    • 1995
  • The method of matrix-assisted laser desorption ionization mass spectrometry has been used to solve some bioanalytical problems, which is difficult to analyse by general methods. For the selection of proper laser wavelength and matrices, eight matriees was used with laser wavelength of 226 and 355nm. The result shows that with wavelength of 355nm better results could be obtained with most of the matrices. The molecular weight of eytochrome C, which was seperated by gel electrophoresis and electro-blotted onto NC membrane is determined by MALDI. The accuracy is better than 0.1%, which is much higher than that of SDS-PAGE. Protein mixture extracted from crude peanut oil is directly determined by MALDI. The molecuiar weight of its three components are determined, and the result also demonstrated that these proteins are in free manner. As proteins arc in 2S bond, with the traditional method, SDS-PAGE, it is not able to decide whether protein exists in combination mode or in free manner. In the technique of two phase aquesous solution, which is used for separating biomaterials, water soluble polymers stained with dyes are used in this technique. By the use of MALDI the number or the dye molecules react with the polymer PEG molecule are determined, and that is difficult to determined by other methods.

  • PDF

Gold Nanostructure-Based Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Analysis of Small Biomolecules

  • Hye-Sun Cho;Tae Hoon Seo;Ji Hun Park;Young-Kwan Kim
    • Mass Spectrometry Letters
    • /
    • 제15권1호
    • /
    • pp.26-39
    • /
    • 2024
  • Gold nanostructures (Au NSs) are useful and interesting matrices for mass spectrometric analysis of various biomolecules based on organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS). Au NSs provide high efficiency and versatility in LDI-TOF-MS analysis based on their well-established synthesis and surface functionalization, large surface area, high laser absorption capacity, and photothermal conversion efficiency. Therefore, Au NSs based LDI-TOF-MS can be a facile, functional, and efficient analytical method for important small biomolecules owing to its simple preparation, rapid analysis, salt-tolerance, signal reproducibility, and quantitative analysis. This review chronologically summarizes the important advance of Au NSs-based LDI-TOF-MS platforms in terms of in-depth mechanism, signal enhancement, quantitative analysis, and disease diagnosis.

Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용 (Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry)

  • 권필승
    • 대한임상검사과학회지
    • /
    • 제55권4호
    • /
    • pp.244-252
    • /
    • 2023
  • 검사 결과의 적시성과 정확성은 임상의가 특히 생명을 위협하는 감염이나 시력과 같은 중요한 장기 및 기능이 위험에 처한 경우, 효과적이고 표적화된 항균 요법을 결정하고 즉시 시행하는데 중요한 요소이다. 가능한 한 최단 시간 내에 정확하고 신뢰할 수 있는 결과를 얻기 위해 matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) 질량분석기기반 분석을 개선하고 최적화하기 위한 추가 연구 노력이 이루어져야 할 것이다. MALDI-TOF 질량분석기기반 세균 식별은 주로 임상 시료에서 병원체를 분리 및 정제하는 기술, 스펙트럼 라이브러리 확장 및 소프트웨어의 업그레이드에 중점을 둔다. 기술이 발전함에 따라 많은 MALDI-TOF 기반 미생물 동정 데이터베이스 및 시스템이 허가되어 임상에 사용되고 있다. 그럼에도 불구하고, 포괄적인 임상미생물의 특성화를 위해서는 MALDI-TOF 질량분석기 기반 항균제 내성 분석을 개발하는 것이 여전히 필요하다. 특정 적용 범주, 일반적인 분석물질, 주요 수행방법, 한계 및 해결점을 포함하여 임상 연구에서 MALDI-TOF의 적용이 중요하다. 임상 미생물 검사실에서 업무 활용을 위해 임상병리사들의 교육 및 훈련을 통한 전문성 확보가 필수적이며, 데이터베이스 구축과 경험을 극대화하여야 할 것이다. 향후 더 강력한 데이터베이스의 활용으로 다양한 분야에서 MALDI-TOF 질량분석기가 적용될 것으로 보인다.

Visible Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Macromolecules Deposited on the Graphite Plate

  • Kim, Jung-Hwan;Paek, Kyung-Soo;Kang, Wee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.315-319
    • /
    • 2002
  • Visible surface-assisted desorption/ionization mass spectrometry (SALDI-MS) has been investigated for several small macromolecules deposited on the graphite plate using laser radiation at 532 nm where most of the macromolecules are transparent. The graphite surface functioned well as a photon absorbing material and an energy transfer mediator for visible light. The results show that visible SALDI is a much softer ionization technique than UV-MALDI and FAB-MS in our results with synthetic macromolecules, PPG, PPGMBE and cavitand molecules. For the SALDI of biomolecules, glycerol as a proton source was essential with the graphite plate. As in visible SALDI, the role division of the photon absorbing material and the cationization agent can provide a generality in mass spectrometric analysis of macromolecules compared with MALDI using the dual functional matrix.

Sample Preparation for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

  • Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • 제6권2호
    • /
    • pp.27-30
    • /
    • 2015
  • This article reviews the fundamentals of sample preparation used in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). MALDI is a soft ionization method used to generate analyte ions in their intact forms, which are then detected in MS analysis. MALDI-MS boasts fast analysis times and easy-to-use operation. The disadvantages of MALDI-MS include the occurrence of matrix-associated peaks and inhomogeneous distribution of analyte within the matrix. To overcome the disadvantages of MALDI-MS, various efforts have been directed such as using different matrices, novel matrix systems, various additives, and different sample preparation methods. These various efforts will be discussed in detail. This article will benefit those who would like to obtain basic knowledge of MALDI sample preparation and those who would like to use MALDI-MS in their chemical analyses.

Characterization of Extremely Hydrophobic Immunostimulatory Lipoidal Peptides by Matrix Assisted Laser Desorption Ionization Mass Spectrometry

  • 장정석;이성택;장윤석
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권11호
    • /
    • pp.1036-1039
    • /
    • 1996
  • Synthetic lipoidal peptides based on viral protein sequences have been prepared. These peptides contain an N-palmitoyl group at the N-terminal residue, which is a modified cysteine, containing a S-[2,3-bis(acyloxy)-(2-R,S)-propyl] moiety. When this residue (Pam3Cys) is at the N-terminus of a synthetic peptide, it acts as potent immunoadjuvant to enhance both IgM and IgG antibody responses to the attached peptide. Conventional analytical procedures (e.g., Edman degradation and amino acid analysis) are either not applicable due to the N-terminal modification, or do not provide confirmation of the intact structure. Chromatographic analysis is also hindered by the tendency of these lipoidal Pam3Cys peptides to form large aggregates, and in some cases to be permanently adsorbed on reversed phase columns. We have applied several mass spectrometric techniques, including fast atom bombardment (FAB), electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) to characterize the intact structures of a number of different Pam3Cys synthetic peptides. The MALDI-MS has been found to be the most sensitive for the analysis of the structure of Pam3Cys peptides.

Studies of the Organic Molecules Dissociative Surface Ionization in the Mass-Spectrometric Surface Ionization Method

  • Ilkhomjan Saydumarov;Dilshadbek Usmanov
    • Mass Spectrometry Letters
    • /
    • 제15권1호
    • /
    • pp.54-61
    • /
    • 2024
  • An improved voltage modulation method (VMM) was used to control the heat release and adsorption properties of the adsorbent. In this work, the voltage and flux modulation methods were considered under unified experimental conditions of dissociative surface ionization (SI) of polyatomic organic molecules, the criteria were found when under VMM conditions the current relaxation of SI carries information about the kinetic properties of thermal desorption of ionizable dissociation particles arriving on the surface of polyatomic molecules. Conditions were found under which the relaxation of the ionic current in the flux modulation method is determined by the kinetics of the heterogeneous dissociation reaction of the original polyatomic molecules. The values of the thermal desorption rate constant K+ and the activation energy E+ obtained with VMM for desorption of (CH3)2NCH+2 ions with m/z 58 by adsorption of imipramine and amitriptyline molecules agree well with each other and with the results for the desorption of the same ions by adsorption of other molecules. This confirms one of the basic conditions for the equilibrium process SI - the a degree (β coefficient) of the same particles SI on the same emitter surface is the same and does not depend on the way these particles are formed on the emitter surface.