• 제목/요약/키워드: Laser cutting

검색결과 370건 처리시간 0.03초

오류주입공격에 대한 개선된 이중모드 레이저 프로빙 시스템 (An Improved Dual-mode Laser Probing System for Fault Injecton Attack)

  • 이영실;;이훈재
    • 정보보호학회논문지
    • /
    • 제24권3호
    • /
    • pp.453-460
    • /
    • 2014
  • 오류주입공격(Fault Injection Attack)은 하드웨어적 또는 소프트웨어적으로 구현된 암호칩에 인위적으로 오류를 주입 또는 발생시켜 암호 알고리즘 동작/수행을 방해함으로써 칩에 내장된 정보를 찾아내는 공격으로, 이 중 레이저를 이용한 오류주입공격은 특히 성공적인 것으로 입증된 바 있다. 본 논문에서는 기존의 플래쉬 펌프 방식의 레이저와 광섬유 레이저 모델을 병렬 결합한 이중모드 레이저 방식으로 개선된 레이저 프루빙 시스템을 제안하였다. 제안된 방법은 에너지 출력은 높으나 주파수 반복률이 낮아 오류주입공격 실험에 적합하지 않은 기존의 플래쉬 펌프 방식 레이저를 레이저 절단용으로 활용하고, 추가로 별도의 오류주입을 위한 고주파 반복률을 갖는 레이저를 단순 병렬 결합시키는 방법이다. 오류주입을 위해 결합된 제 2의 신규 레이저는 반도체 레이저와 광섬유 레이저를 선택하여 두 가지 시스템을 설계하였으며, 이에 따른 장 단점을 비교분석하였다.

소다석회유리의 CO2 레이저 스크라이빙 가공 (CO2 Laser Scribing Process of Soda Lime Glass)

  • 강승구;신중한
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.74-81
    • /
    • 2019
  • This study reports the CW $CO_2$ laser scribing of soda lime glass. In this study, scribing experiments are carried out at different laser powers, scan speeds, and focal positions to investigate the effect of the process parameters on the interaction characteristics between a laser beam and glass. In particular, the interaction characteristics are analyzed and described with the input laser energy per unit length. According to the experimental results, the damage threshold for the glass surface was found to exist between 0.072 and 0.08 J/mm. The input laser energy in this region induced partial melting of the surface and grain-shaped cracks. These cracks tended to increase as the input laser energy increased. At the laser input energy larger than 1 J/mm, a huge crack propagating along the scan direction was produced, and the volume below the scribed area was fully melted. The growth of this crack finally resulted in the complete cutting of the glass at the input laser energy above 8 J/mm. It was found that both the width and depth of the scribed line increased with increasing input laser energy. For the beam focusing at the rear surface, the width of the scribed line varied irregularly. This could be ascribed to the increased asymmetry of the beam intensity distribution when the laser beam was focused at the rear surface. Under this condition, a large burr was only produced on one side of the scribed line.

버형성 최소화를 위한 스텝드릴 형상 개발 (Development of Step Drill Geometry for Burr Minimization)

  • 장재은;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.1043-1046
    • /
    • 2002
  • In this paper, drill tests were carried out by modifying drill geometry for burr minimization. Final objective of this study is to develop compatible drill shape for minimization of burr formation. These experimented results with modified drill are measured with laser sensor after performing drilling with variable material. Simultaneously, the cutting force and the torque of various drill geometry have been observed with same cutting condition to judge drill stability. As a result, burr was minimized in step drill with 75$^{\circ}$ step angle at every material.

  • PDF

경사진 출구면에서 드릴 버 형성에 관한 실험적 고찰 (Burr formation experiment in drilling on the inclined exit surface)

  • 김병권;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1253-1256
    • /
    • 2005
  • An Experiment was carried out to study burr minimization in drilling on the inclined exit surface. Several different drills, exit surface angles and cutting conditions were selected to determine their influences on burr formation. In drilling operation, there are not only flat exit surfaces but also inclined exit surfaces which is described as inclination angle. Inclination of exit surface causes a quiet different burr formation when comparing with flat surface. Burr formation mechanisms are analyzed according to the drill geometries and cutting conditions. Several schemes for burr minimization on inclined exit surface were proposed. Burr geometry in each drill and cutting condition are measured by laser measurement system.

  • PDF

펨토초 레이저를 이용한 실리콘 웨이퍼 표면 미세가공 특성 (Micromachining of the Si Wafer Surface Using Femtoseocond Laser Pulses)

  • 김재구;장원석;조성학;황경현;나석주
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.184-189
    • /
    • 2005
  • An experimental study of the femtosecond laser machining of Si materials was carried out. Direct laser machining of the materials for the feature size of a few micron scale has the advantage of low cost and simple process comparing to the semiconductor process, E-beam lithography, ECM and other machining process. Further, the femtosecond laser is the better tool to machine the micro parts due to its characteristics of minimizing the heat affected zone(HAZ). As a result of line cutting of Si, the optimal condition had the region of the effective energy of 2mJ/mm-2.5mJ/mm with the power of 0.5mW-1.5mW. The polarization effects of the incident beam existed in the machining qualities, therefore the sample motion should be perpendicular to the projection of the electric vector. We also observed the periodic ripple patterns which come out in condition of the pulse overlap with the threshold energy. Finally, we could machined the groove with the linewidth of below $2{\mu}m$ for the application of MEMS device repairing, scribing and arbitrary patterning.

변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석 (Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;신보성
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

Jansen Mechanism을 이용한 보행로봇의 설계

  • 윤지훈
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.566-573
    • /
    • 2017
  • Develop a leg walking robot with 'Janssen mechanism'. Using 'ScienceBox' base and add more items to improve moving speed and balance of the robot. To make the robot better, made optimized drawing and produced it using plastic with 3D printer and acyrl with Laser cutting machine.

  • PDF