• 제목/요약/키워드: Laser beam system

검색결과 625건 처리시간 0.03초

3차원 레이저 스캐너를 이용한 인쇄롤 가공에 관한 연구 (Study on Printing Roll Manufacturing by using 3 Dimensional Laser Scanner)

  • 강희신;노지환;손현기
    • 한국레이저가공학회지
    • /
    • 제16권4호
    • /
    • pp.17-23
    • /
    • 2013
  • The research for the development of roll-to-roll printing process is actively underway on behalf of the existing semiconductor process. The roll-to-roll printing system can make the electronic devices to low-cost mass production. This study is performed for developing the manufacturing technology of the printing roll used in the printing process of electronic devices. The indirect laser engraving technology is used to create printable roll and the printable roll is made out of the chrome coated roll after coating copper and polymer on the surface of steel roll, ablating the polymer on the surface of roll and etching the roll. The 3 dimensional laser scanner and roll rotating systems are constructed and the system control program is developed. We have used the fiber laser of 100 W grade, the 3 dimensional laser scanner and the 3 axes moving stage system with a rotating axis. We have found the optimal conditions by performing the laser patterning experiments and can make the minimum line width of $24{\mu}m$ by using the developed 3 dimensional laser scanner system.

  • PDF

Laser Beam Shaping Using Hollow Optical Fiber and Its Application in Laser Induced Thermal Printing

  • Yi, Jong-Hoon;Lee, Kang-In;Park, Ill-Hyun;Kwon, Jin-Hyuk
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.146-151
    • /
    • 2009
  • A Gaussian beam of single mode fiber laser was changed into a ring-shaped pattern after it was transmitted through the hollow optical fiber. The ring-shaped beam was focused on a plane by an f-. lens and it was scanned by a Galvano-mirror. The spatial profile of laser energy incident on a plane had two peaks at both sides of the scanned linear track. The profile was compared with the result obtained when the Gaussian beam was dithered transversely by an acousto-optic modulator. It is found that hollow optical fiber beam shaper can replace acousto-optic beam dithering device which is employed in a laser induced thermal printing system.

피코초 레이저 및 CDE를 이용한 TSV가공기술 (TSV Formation using Pico-second Laser and CDE)

  • 신동식;서정;조용권;이내응
    • 한국레이저가공학회지
    • /
    • 제14권4호
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Calibration of the depth measurement system with a laser pointer, a camera and a plain mirror

  • Kim, Hyong-Suk;Lin, Chun-Shin;Gim, Seong-Chan;Chae, Hee-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1994-1998
    • /
    • 2005
  • Characteristic analysis of the depth measurement system with a laser, a camera and a rotating mirror has been done and the parameter calibration technique for it has been proposed. In the proposed depth measurement system, the laser beam is reflected to the object by the rotating mirror and again the position of the laser beam is observed through the same mirror by the camera. The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD. There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance. The calibration techniques to minimize the effect of such major parameters are proposed.

  • PDF

파이버 공초점법을 이용한 레이저 빔 자동 초점 제어 장치에 관한 연구 (Study on Auto Focusing System of Laser Beam by Using Fiber Confocal Method)

  • 문성욱;김종배;김선흠;배한성;남기중
    • 한국레이저가공학회지
    • /
    • 제9권3호
    • /
    • pp.7-13
    • /
    • 2006
  • Auto focusing system to find optimized focal position of laser beam used for material process has been investigated by using fiber confocal method. Wavelength of laser diode (LD) and diameter of single-mode fiber are 780nm and $5.3{\mu}m$, respectively. Intensity distributions of beam reflected from the surface of mirror and silicon bare wafer have been observed in a gaussian form. Experimental results show that focal position obtained by LD is shifted from one observed from surface scribed by laser about $80{\mu}m$. It is due to the difference of wavelength and each divergence of between LD and laser used for material process. It is confirmed that auto focusing control system through position calibration has operated steadily.

  • PDF

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

Tri-Metal의 레이저 용접 (Laser Beam Welding of Tri-Metal)

  • 한유희;서정
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1994년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.157-160
    • /
    • 1994
  • Characteristics of laterally bonded tri-metal sheets (stainless steel/Invar/stainless steel) fabricated by laser beam welding are compared to those of samples by Imphy and Hitachi Co-operations. Residual stess of tri-metal is calculated by using of the hole-drilling stain gauge method. The aging effect of stainless steel strip on welding is also discussed. In addition to, a numerical approach for laser beam welding is tried. Finally, laser beam welding system of tri-metal can be designed on th basis of experimental and theoretical results.

  • PDF

광압을 이용한 입자빔 집속 (Particle Beam Focusing Using Radiation Pressure)

  • 김상복;박형호;김상수
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.110-115
    • /
    • 2005
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25m plano-convex lens having 2.5mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an optical tweezers type and pure gradient force type. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. Using the optical tweezers type, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about $16\%,\;11.4\%\;and\;9.6\%$ for PSL particle size of $2.5{\mu}m,\;1.0{\mu}m,\;and\;0.5{\mu}m$, respectively. Particle beam width was minimized around the laser power of 0.2W. However, as increasing the laser power higher than 0.4W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. For pure gradient force type, the reduction of the particle beam width was smaller than optical tweezers type but proportional to laser power. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively.

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

빌드업 필름의 선폭 6㎛급 패턴 가공을 위한 직접식 UV 레이저 프로젝션 애블레이션 (Direct UV laser projection ablation to engrave 6㎛-wide patterns in a buildup film)

  • 손현기;박종식;정수정;신동식;최지연
    • 한국레이저가공학회지
    • /
    • 제17권3호
    • /
    • pp.19-23
    • /
    • 2014
  • To directly engrave circuit-line patterns as wide as $6{\mu}m$ in a buildup film to be used as an IC substrate, we applied a projection ablation technique in which an 8 inch dielectric ($ZrO_2/SiO_2$) mask, a DPSS 355nm laser instead of an excimer laser, a ${\pi}$-shaper and a galvo scanner are used. With the ${\pi}$-shaper and a square aperture, the Gaussian beam from the laser is shaped into a square flap-top beam. The galvo scanner before the $f-{\theta}$ lens moves the flat-top beam ($115{\mu}m{\times}105{\mu}m$) across the 8 inch dielectric mask whose patterned area is $120mm{\times}120mm$. Based on the results of the previous research by the authors, the projection ratio was set at 3:1. Experiments showed that the average width and depth of the engraved patterns are $5.41{\mu}m$ and $7.30{\mu}m$, respectively.

  • PDF