• Title/Summary/Keyword: Laser beam spot size

Search Result 59, Processing Time 0.039 seconds

Development of Measurement mechanism of Laser Beam Spot size for Industrial SFF system (산업용 SFF 시스템에서 Laser Beam Spot size 측정 메커니즘 개발)

  • Bae, Sung-Woo;Kim, Dong-Soo;Choi, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1383-1388
    • /
    • 2007
  • Accuracy and processing time are very important factors when the desired shape is fabricated with Selective Laser Sintering (SLS), one of Solid Freeform Fabrication (SFF) systems. In a conventional SLS process, laser spot size is fixed during laser exposing on the sliced figure. Therefore, it is difficult to accurately and rapidly fabricate the desired shape. In this paper, to deal with those problems an SFF system having ability of changing spot size is developed. The system provides high accuracy and optimal processing time. Specifically, a variable beam expander is employed to adjust spot size for different figures on a sliced shape. Finally, Design and performance estimation of the SFF system employing a variable beam expander are achieved and the mechanism will be addressed to measure the real spot size generated from the variable beam expander.

  • PDF

The Influence of the Initial Spot Size of a Double Half-Gaussian Hollow Beam on Its Propagation Characteristics in a the Turbulent Atmosphere

  • Yuan, Dong;Shu-Tao, Li;Jia-Yin, Guan;Xi-He, Zhang;Guang-Yong, Jin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.541-546
    • /
    • 2016
  • In this paper, by using the Rayleigh-Sommer field theory and the cross-spectral density function, the analytical expression for the intensity distribution of a double half-Gaussian hollow beam in a turbulent atmosphere is obtained. The influence of the initial spot size of this beam on its propagation properties in a turbulent atmosphere is simulated, and the intensity distributions for such beams with different spot sizes are obtained. The results show that the initial spot size has an important influence on the propagation properties in the near field, while this influence in the far field is very weak.

Effect of the Incident Optical Spot Size Upon the Quadrant Photodetector on the Optical Displacement Detection Sensitivity (4분할 광 검출기 상의 광점 크기가 변위 측정감도에 미치는 영향)

  • Lee, Eun-Joong;Lee, Jin-Woo;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.71-74
    • /
    • 2008
  • In this paper, we have measured the effect of the optical spot size, incident upon the quadrant photodetector, on the optical displacement sensitivity of the optical beam deflection technique. We have built an optical displacement detection system based on the optical beam deflection method using 3 mW He-Ne laser and measured the displacement sensitivity with changing the optical spot size on the quadrant photodetector. We have also calculated the changes in the optical displacement sensitivity as a function of the incident laser spot size by modeling a circular optical spot with constant laser intensity. Our experimental and theoretical studies show that the optical displacement sensitivity increases with the decrease in the optical spot size. This suggests that in the design of the optical motion detection systems with sub-nanometer sensitivity, the displacement sensitivity can be optimized by reducing the size of the incident optical spot on the detector.

Evaluation of Nd:YAG Laser Beam Quality in Unstable Rosonators (불안전형 공진기를 갖는 Nd:YAG 레이저에서의 beam quality 평가)

  • 김광석;김정묵;김철중;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.60-66
    • /
    • 1994
  • First, the beam waist size of TE$M_{00}$ Nd:YAG laser mode with Positive Branch Unstable Resonator was calculated. and then, the output power, fundamental mode and multimode beam quality factor of PBUR were measured and compared with thouse of reference resonator with plane pallalel mirrors. In characterizing the beam quality, the $M^2$ concept was used. The focusability of laser beam in unstable resonators was discussed with this $M^2$.

  • PDF

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

Analysis of Specific Problems in Laser Scanning Optical System Design

  • Joo, Won-Don
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • We analyze aberrations in an optical laser printer system in order to know how to determine an allowable non-uniformity of the movement of a light spot, how to determine allowed variation of spot sizes, and how to minimize the influence of these deviations on technological errors. In this paper, the correction and the tolerance of distortion are analyzed by using the concept of zonal and global distortions. The tolerance of field curvature is also obtained from Gaussian beam properties. In order to reduce the change of the entrance pupil position and to make a more compact laser printer system the minimum size of the rotator is exactly derived from the geometry with the introduction of the shift angle of the input beam.

Precision measuring of burrs on sheet metal using the laser (레이저를 이용한 박판 버의 정밀측정)

  • 신홍규;홍남표;김헌영;김병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1824-1827
    • /
    • 2003
  • The sheet metal shearing process is normally used in the precision elements such as semi-conductor components. In precision elements, burrs usually reduce the quality of machined parts and cause interference, jamming and misalignment during assembly procedures and because of their sharpness, they can be safety hazard to personnel. Furthermore, not only burrs are hard to predict and avoid, but also deburring, the process of removing burrs, is time-consuming and costly. In order to get the burr-free parts, therefore, we developed the precise burr measuring system using the laser. The laser burr measuring system consists of the laser probe, the photo detector, the achromatic doublet lens, and the rotary & the X-Y table. In previous reports, we used simple vertical measuring method. But, as we used relatively bigger laser spot diameter and had the limited reflection angle, it was difficult to obtain the precise measuring results. So called, the spot size effect makes the profile of burr measured distorted and the burr height measured smaller. By introducing the novel laser measuring method which employing the achromatic lens system and the tilting mechanism, we could make the spot size smaller and get the appropriate beam direction angle. Through the experiments, the accuracy of the developed system is proved. The burr height measured during the punching process can be used for automatic deburring and in-situ aligning.

  • PDF

$CO_2$ Laser Beam Welding and Formability of Steel Plates with Different Thicknesses (이종두께 강판의 $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Kim, J.O.;Lee, Y.S.
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.82-91
    • /
    • 1996
  • The maximum butt-joint gap size in $CO_2$ laser beam welding of SAPH steel plates with different thicknesses and its bending formability were studied. In the range of the gap size$\geq$0.1mm, the optimal butt welding speed was faster than that of no gap (air gap) condition. This behaviour was independent on the difference of thickness at any combination. Also, the allowable gap size in steel plates with different thicknesses was larger than with same thicknesses. In the range of $T/T_0$(bead shape) $\geq$ 0.8, good bending formability was obtained at any combination of thickness. The formability was improved by reducing the hardness in weld bead using pre-heating process. Finally, FEM result of the laser beam welded underframe with different thicknesses was compared to that of the conventional spot welded underframe.

  • PDF

Shape and Chemical Composition of Laser Surface Alloyed Layer under Moving Laser Source (공정변수에 따른 레이저표면합금층의 형상 및 성분변화에 관한 연구)

  • 최정영;이창희
    • Laser Solutions
    • /
    • v.2 no.2
    • /
    • pp.8-17
    • /
    • 1999
  • This study includes a basic feature of laser surface alloying for enhancing the surface properties of materials. Effects of laser processing parameters such as beam power, beam size, scanning speed on the shape and composition of alloyed layer was simulated in case of moving beam conditions (2-dimensional numerical methods). Simulated results were compared with experiments, in which the plasma coating of 80% Ni + 20% Cr deposited on the SS41 substrate was remelted with CO2 laser with Gaussian energy distribution. Simulation and experiments revealed that the shape (dimension)and composition of laser alloyed layer were strongly dependent upon the process parameters, especially interaction time (travel speed) as compared to beam diameter, beam power and absorptivity. The shape and composition of alloyed layervaried more or less exponentially with parameters.

  • PDF