• Title/Summary/Keyword: Laser beam machining

Search Result 88, Processing Time 0.024 seconds

Reverse Engineering of Compound Surfaces on the Machine Tool using a Vision Probe (비전 프로브를 이용한 기상에서의 복합곡면의 역공학)

  • 김경진;윤길상;초명우;권혁동;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.287-292
    • /
    • 2002
  • This paper presents a reverse engineering method for compound surfaces using vision system. A CNC machining center is used as a measuring station, which is equipped with slit beam generator and vision probe. Since obtained data using slit beam or laser scanner may have much data loss along the edge of compound surfaces, an algorithm is presented in this study to recover missing geometric data at such region. First, b-spline interpolation is applied to extract edge information of the surface, and as a next step, b-spline approximation is applied to recover the missing geometric data. Finally, b-spline skinning method is applied to regenerate the surface information. Appropriate simulation and experimental works are preformed to very the effectiveness of the proposed methods.

  • PDF

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment- (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1048-1054
    • /
    • 2011
  • Laser surface hardening process is the method of hardening surface by inducing rapid self quenching of laser injected area through transfer of surface heat to inside after rapid heating of laser injected area only by high density energy heat source. This surface treatment method does not involve virtually any thermal deformation by heat treatment nor accompanies any other process after surface hardening treatment. In addition, allowing local machining, this method is a surface treatment method suitable for die with complicated shape. In this study, die material cast iron was surface-treated by using high power diode laser with beam profile suitable for heat treatment. Since the shapes of die differ by press die process, specimens were heat-treated separately on plane and corner depending on the applied parts. At this time, corner heat treatment was done with optic head inclined at $10^{\circ}$. As a result, corner heat treatment easily involves concentration of heat input due to limitation of heat transfer route by the shapes compared with plane part, so the treatment accomplished hardening at faster conveying speed than plane heat treatment.

A study on the laser surface hardening of SM 45C steel (SM 45C강의 레이저 표면경화처리에 관한 연구)

  • 나석주;김성도;이건이;김태균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.53-62
    • /
    • 1987
  • High power lasers provide a controllable and precise energy source in surface transformation hardening. A careful control of the process is needed in order that the surface layer of the material reaches the austenizing temperature, but that it does not melt. In order to achieve this the results of theoretical and experimental studies on the laser surface hardening of a medium carbon steel are described. A two-dimensional computer program, which can be used generally for the determination of transient temperature distributions in welding and heat treatment, was established on the basis of the finite element method. For the confirmation of the accuracy of the numerical analysis, a medium carbon steel (SM 45C) of 5mm thickness was heat-treated with a 1kW CW CO$_{2}$ laser machine, while the traverse speed and the distance from the focal point (defocused distance) were varied. Experimental and numerical results showed a similar tendency in correlations between the hardened zone shape and the process parameters. With increasing beam spot diameter the width and depth of the hardened zone increased for relatively small beam spot diameters, but decreased rapidly after reaching the maximum value, while with increasing traverse speed the width and depth of the hardened zone decreased monotonously. Too small beam spot diameters are to be avoided, since the surface melting would lower the surface hardness and produce an uneven surface which may be unacceptable because of the possible requirement for subsequent machining. It could be observed that for a given traverse speed and laser power input there exists a optimal range of the beam spot diameter, which produce a large width of the hardened zone but no melting on the surface.

A study on the manufacture of cylindrical vaporization amplification sheets using centrifugal force (원심력을 이용한 원통형 증기화 증폭 시트 제작 연구)

  • Ko, Min-Sung;Wi, Eun-Chan;Yun, Yi-Seob;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • As technologies in various industrial fields develop, high-quality parts are required. In the past, precision parts were produced by the contact machining method, but the contact machining method has clear limitations. In order to solve this problem, research on a non-contact processing method has been conducted, and laser processing and electric discharge processing are representative. However, the non-contact method has a problem in that productivity is insufficient, and there is a problem that it takes a lot of time to continuously process microholes. Researchers have developed an electron beam drilling equipment for continuous processing of fine holes, and a vaporization amplification sheet to increase the processing efficiency of the equipment. In this study, a cylindrical vaporization amplification sheet using room temperature curing type silicon was fabricated, and the metal distribution and thickness uniformity of the produced sheet were analyzed. In order to manufacture a cylindrical vaporization amplification sheet, an equipment capable of using centrifugal force was developed, and a sample in which metal powder was evenly distributed and a constant thickness was produced.

A Study on the Radiation Characteristics of Concave Optical Fiber Tips (오목한 광섬유 팁의 방사특성에 관한 연구)

  • Son, Gyeong-Ho;Yu, Kyoung-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.731-736
    • /
    • 2017
  • In this paper, we report the fabrication of concave surface fiber tips for optical resonators. It was confirmed that the radius of curvature on fiber end can be controlled by introducing the hydrofluoric acid solution and the wavelength of $1.55{\mu}m$ laser which is absorbed well in the etchant to induce the photothermal effect. Using the microscope images, we observed the proposed concave fiber tip fabrication method is effective to make the controllable concave tips. We also observed changes in the size of the beam emitted from the tips with the various radius of curvature using the beam profiler. The authors believe that the proposed method will be applied to resonators for optical communications.

Dimensional Changes and Residual Stress of Spur Gear According to the Manufacturing Processes -Comparison of Cold Forging Part with Machining Part- (스퍼기어의 제조공정에 따른 치수변화와 잔류응력에 관한 연구 -냉간 단조기어와 기계가공기어 비교-)

  • Kwon, Y.C.;Lee, J.H.;Lee, C.M.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.575-581
    • /
    • 2007
  • The high dimensional accuracy of the cold forged part could be acquired by the accurate dimensional modification for the die, which is, the dimensional changes from the die through forged part to final part after heat treatment were considered. The experimental and FEM analysis are performed to investigate the dimensional changes from the die to final part on cold forged part, comparing with the machined gear. The dimension of forged part is compared with the die dimension at each stage, such as, machined die, cold forged part, and heat-treated-part. The elastic characteristics and thermal influences on forging stage are analyzed numerically by the $DEFORM-3D^{TM}$. The analyzed residual stress of forged part is considered into the FE-analysis for heat treatment using the $DEFORM-HT^{TM}$. The effects of residual stress affected into the dimensional changes could be investigated by the FEA. Each residual stress of gears was measured practically by laser beam type measurement.

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).