• Title/Summary/Keyword: Laser ablation technique

Search Result 52, Processing Time 0.02 seconds

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

Intramolecular Ion-Molecule Reactions within Ti+(CH3COCH3)n Heteroclusters: Oxidation Pathway via C=O Bond Activation

  • Koo, Young-Mi;Hong, Ki-Ryong;Kim, Tae-Kyu;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.953-958
    • /
    • 2010
  • A laser ablation-molecular beam/reflectron time-of-flight mass spectrometric technique was used to investigate the ion-molecule reactions that proceed within $Ti^+(CH_3COCH_3)_n$ heterocluster ions. The reactions of $Ti^+$ with $CH_3COCH_3$ clusters were found to be dominated exclusively by an oxidation reaction, which produced $TiO^+(CH_3COCH_3)_n$ clusters. These ions were attributed to the insertion of a $Ti^+$ ion into the C=O bond of the acetone molecule within the heteroclusters, followed by $C_3H_6$ elimination. The mass spectra also indicated the formation of minor sequences of heterocluster ions with the formulas $Ti^+(C_3H_4O)(CH_3COCH_3)_n$ and $TiO^+(OH)(CH_3COCH_3)_n$, which could be attributed to C-H bond insertion followed by $H_2$ elimination and to the sequential OH abstraction by the $TiO^+$ ion, respectively. Density functional theory calculations were carried out to model the structures and binding energies of both the association complexes and the relevant reaction products. The reaction pathways and energetics of the $TiO^+\;+\;CH_2CHCH_3$ product channel are presented.