• Title/Summary/Keyword: Laser Ultrasound

Search Result 100, Processing Time 0.028 seconds

Development of Self-compensated Technique for Evaluation of Surface-breaking Crack by Using Laser Based Ultrasound

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It is required to evaluate nondestructively depth of surface-breaking cracks in structures. In this paper, the self-compensated technique by laser-based ultrasound is used to measure the depth of surface-breaking defect. Optical generation of ultrasound produces a well defined pulse with reliable frequency content. It is broad banded and suitable for measurement of attenuation and scattering over a wide frequency range. The self-calibrated signal transmission data of surface wave shows good sensitivity as a practical tool far assessment of surface-breaking defect depth. It is suggested that the relationship between the signal transmission and crack depth can be used to predict the surface-breaking crack depths in structures.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Simultaneous Combination Treatment Using High-Intensity Focused Ultrasound and Fractional Carbon Dioxide Laser Resurfacing for Facial Rejuvenation

  • Kang, Hee Yong;Park, Eun Soo;Nam, Seung Min
    • Medical Lasers
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • Background and Objectives High-intensity focused ultrasound (HIFU) can produce small zones of thermal damage. A HIFU procedure is non-invasive and it can achieve rejuvenation of facial skin. Fractional CO2 laser resurfacing delivers thermal damage to the pixilated columnar zone of the skin and so evoke collagen remodeling, the same as HIFU. In many cases, the patients who want rejuvenation with HIFU are also good candidates for cutaneous photorejuvenation such as can be accomplished via fractional CO2 resurfacing. If patients are treated in a single session by remodeling both the superficial and deep compartments of skin by using both modalities, then improvement in rhytides and tightening of sagging skin will optimize the aesthetic result. Materials and Methods Between May 2014 and January 2018, a total of 44 patients were treated with combination HIFU and fractional CO2 laser resurfacing according to our protocol. First, the HIFU was applied to the entire face with an average of 300 treatment lines. Immediately after HIFU treatment, the ultrasound gel was washed off and then fractional CO2 laser resurfacing was performed. We evaluated the patients using 4-point grading scales. The clinician examined the skin for evidence of complications after the completion of treatment. Results All the patients' skin quality showed improvement. Further. the clinical results after duel modality treatment were substantially better than that after the use of either modality alone. The recovery times and the incidence of adverse events when quickly and consecutively performing both treatments were similar as compared to those with employing stepwise treatment. We encountered no complications whatsoever. Conclusion When compared with stepwise therapy, combination therapy with HIFU and fractional CO2 resurfacing offers better, safer and more effective clinical results. Thus, for targeting multiple layers of aging facial skin, this combination therapy can be safely performed in a single treatment session.

Novel Laser Ultrasonic Receiver for Industrial NDE

  • Pouet, B.;Breugnot, S.;Clemenceau, P.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.380-389
    • /
    • 2006
  • A new laser-based ultrasonic receiver that is based on multi-channel interferometry is shown to be well suited for robust and sensitive detection of ultrasound in industrial environment. The proposed architecture combines random-quadrature detection with detector arrays and parallel multi-speckle processing. The high sensitivity is reached, thanks to the random phase distribution of laser speckle caused by surface roughness. High-density parallel signal processing is achieved by using a simple demodulation technique based on signal rectification. This simple detection scheme is also demonstrated for rejection of the laser intensity noise, making possible the use of lower cost laser without reduction in performances. Results demonstrating this new principle of operation and its performances are presented.

Evaluation of Depth of Surface-breaking Slit by Nondestructive Self-calibrating Technique Using Laser Based Ultrasound (레이저 유도 초음파 및 자기보상 기법을 이용한 재료의 표면균열 깊이 비파괴 평가)

  • Lee, Jun-Hyeon;Choe, Sang-U;Ha, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.745-753
    • /
    • 2002
  • It is required to evaluate nondestructively the crack depth of surface-breaking cracks for the assurance of safety of structure. Optical generation of ultrasound produces well defined pulses with a repeatable frequency content, that are free of any mechanical resonances; they are broad band and are ideal for the measurement of attenuation and scattering over a wide frequency range. Self-calibrating surface signal transmission measurement is very sensitive and practical tool for surface-breaking crack depth. In this paper, the self-calibrating technique by laser-based ultrasound is used to evaluate the depth of surface-breaking crack of material. It is suggested that the relationship between the signal transmission and crack depth can be used as a practical model for predicting the surface-breaking crack depths from the signal transmission measured in structure.

The Scanning Laser Source Technique for Detection of Surface-Breaking and Subsurface Defect

  • Sohn, Young-Hoon;Krishnaswamy, Sridhar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • The scanning laser source (SLS) technique is a promising new laser ultrasonic tool for the detection of small surface-breaking defects. The SLS approach is based on monitoring the changes in laser-generated ultrasound as a laser source is scanned over a defect. Changes in amplitude and frequency content are observed for ultrasound generated by the laser over uniform and defective areas. The SLS technique uses a point or a short line-focused high-power laser beam which is swept across the test specimen surface and passes over surface-breaking or subsurface flaws. The ultrasonic signal that arrives at the Rayleigh wave speed is monitored as the SLS is scanned. It is found that the amplitude and frequency of the measured ultrasonic signal have specific variations when the laser source approaches, passes over and moves behind the defect. In this paper, the setup for SLS experiments with full B-scan capability is described and SLS signatures from small surface-breaking and subsurface flaws are discussed using a point or short line focused laser source.

The Effect of Low Level Laser Therapy at the Trigger Points in Masseter and Trapezius Muscles (저출력레이저를 이용한 교근 및 승모근 발통점의 치료에 관한 연구)

  • Sun-Young Kim;June-Sang Park
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • To investigate the effect of low level laser therapy, the author selected 37 dental students with tender points in both masseters and trapeziuses, also measured maximum comportable opening(MCO), Numerical analog scale(NAS) and pressure pain threshold (PPT). 20 subjects were assigned randomly and were treated with GaAlAs diode laser after ultrasound. The other 17 subjects were treated with ultrasound and laser without irradiation. All the subjects were treated after 2 and 4 day respectively and were examined again after 6 days. And the obtained results were as follows : 1. The MCO of irradiated group increased more significantly after treatment than non-irradiated group. 2. The NAS of irradiated group decreased more significantly after treatment than non-irradiated group. 3. The PPT or irradiated group increased more significantly after treatment than non-irradiated group.

  • PDF