• 제목/요약/키워드: Laser Technology

검색결과 3,233건 처리시간 0.027초

스캐너와 산업용 로봇을 이용한 고속 레이저 용접에 관한 연구 (A Study on High Speed Laser Welding by using Scanner and Industrial Robot)

  • 강희신;서정;김종수;김정오;조택동
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.29-29
    • /
    • 2009
  • On this research, laser welding technology for manufacturing automobile body is studied. Laser welding technology is one of the important technologies used in the manufacturing of lighter, safer automotive bodies at a high level of productivity; the leading automotive manufacturers have replaced spot welding with laser welding in the process of car body assembly. Korean auto manufacturers are developing and applying the laser welding technology using a high output power Nd:YAG laser and a 6-axes industrial robot. On the other hand, the robot-based remote laser welding system was equipped with a long focal laser scanner system in robotic end effect. Laser system, robot system, and scanner system are used for realizing the high speed laser welding system. The remote laser welding system and industrial robotic system are used to consist of robot-based remote laser welding system. The robot-based remote laser welding system is flexible and able to improve laser welding speed compared with traditional welding as spot welding and laser welding. The robot-based remote laser systems used in this study were Trumpf's 4kW Nd:YAG laser (HL4006D) and IPG's 1.6kW Fiber laser (YLR-1600), while the robot systems were of ABB's IRB6400R (payload:120kg) and Hyundai Heavy Industry's HX130-02 (payload:130kg). In addition, a study of quality evaluation and monitoring technology for the remote laser welding was conducted. The welding joints of steel plate and steel plate coated with zinc were butt and lapped joints. The quality testing of the laser welding was conducted by observing the shape of the beads on the plate and the cross-section of the welded parts, analyzing the results of mechanical tension test, and monitoring the plasma intensity and temperature by using UV and IR detectors. Over the past years, Trumf's 4kW Nd:YAG laser and ABB's IRB6400R robot system was used. Nowadays, the new laser source, robot and laser scanner system are used to increase the processing speed and to improve the efficiency of processes. This paper proposes the robot-based remote laser welding system as a means of resolving the limited welding speed and accuracy of conventional laser welding systems.

  • PDF

연료전지용 금속 분리판 제작을 위한 DLM공정 특성 연구 (Characterization of Direct Laser Melting Technology for the Fabrication of Fuel Cell Bipolar Plate)

  • 문성민;장정환;김태현;이현종;문영훈
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.118-123
    • /
    • 2011
  • Manufacturing of the bipolar plate of a direct methanol fuel cell (DMFC) by direct laser melting technology (DLM) was attempted. The DLM technology is highly influenced by process parameters such as laser power, scan rate and layering height. Therefore, an analysis of the DLM technology was performed under various conditions. The bipolar plates were fabricated using the DLM process with 316L stainless steel (STS 316L) plates and powder. Powder melting trials at various energy density were performed in order to select a feasible melting range for a given laser power. The melting line height increases and eventually saturates when the energy density increases, but decreases when the laser power increases at a given energy density. For the estimation of the potential performance of the bipolar plate, the surface roughness and contact resistance of the DLM layer were also analyzed. The changes of line height and thickness are useful information to report when manufacturing bipolar plate of fuel cell through the DLM process.

Excimer laser annealing of sol-gel derived PZT thin films

  • 도영호;강민규;오승민;강종윤;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.20-20
    • /
    • 2010
  • The effect of excimer laser annealing on the structural and dielectric behaviors of $PbZr_{0.52}Ti_{0.48}O_3$ (PZT) thin films has been investigated. The amorphous PZT thin films were prepared on Pt/Ti/$SiO_2$/Si substrates by a sol-gel method. The PZT precursor was prepared from lead acetate, zirconium acetylacetonate, and titanium isopropoxide. The starting materials were dissolved in n-propanol and 1,3-propanediol. After, the amorphous PZT thin films were laser-annealed (using KrF excimer laser) as a function of the laser energy density and the number of laser pulse. Structural properties of PZT thin films are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric characterization was done on a RT66A test system and a Agilent 4294A impedance analyzer. The PZT thin films show that excimer laser irradiation drastically improved the crystallization and dielectric properties of the PZT thin films, depending on the energy density and the pulse number.

  • PDF

CO2 레이저를 이용한 음각 원뿔 구조 광섬유 팁 가공 최적화 연구 (CO2 Laser micro-structuring of optical fiber with negative conical shape)

  • 유동윤;최훈국;손익부;노영철;정덕;김영섭;이호;김창환
    • 한국레이저가공학회지
    • /
    • 제18권3호
    • /
    • pp.14-19
    • /
    • 2015
  • A helical fabricating method using $CO_2$ laser was utilized for producing cone-shaped structure on a silica substrate. Output power and the number of scanning radiation were modified in order to control the structure. The experiment shows that the depth and width of cone-shape were increased with higher output power of the laser and the number of scanning. We demonstrate fabrication of multidirectional side-firing optical fiber with diameter of 440 um using the $CO_2$ laser fabrication technique.

레이저 쇼크 피닝에 의한 2205 듀플렉스 스테인리스강의 표면 경도 향상과 표면 변화 관찰 (Improvement of Surface Hardness of 2205 Duplex Stainless Steel by Laser Shock Peening and Observations of Surface Changes)

  • 임현태;정회민;김필규;정성호
    • 한국레이저가공학회지
    • /
    • 제14권1호
    • /
    • pp.19-24
    • /
    • 2011
  • This work reports the results for laser shock peening of duplex stainless steel (22% Chromium - 5% Nickel) using a pulsed Nd:YAG laser (wavelength = 532nm, pulse width = 8ns). for the application to high-capacity pumps for seawater desalination plants. By properly selecting the process parameters such as laser intensity of 10GW/$cm^2$, laser pulse density of 75pulse/$mm^2$, and $100{\mu}m$ thick aluminum foil as an absorbent coating layer, the surface hardness of duplex stainless steel could be enhanced by 26%, from 256HV to 323HV with little changes in surface morphology and roughness. The depth of laser shock peened layer was measured to be around 2mm. The large enhancement of surface hardness is considered to have high practical importance in minimizing abrasive and corrosive deterioration of pump parts.

  • PDF

레이저 세정기술을 이용한 웨이퍼의 표면세정 (Surface Cleaning of a Wafer Contaminated by Fingerprint Using a Laser Cleaning Technology)

  • 이명화;백지영;송재동;김상범;김경수
    • 한국분무공학회지
    • /
    • 제12권4호
    • /
    • pp.185-190
    • /
    • 2007
  • There is a growing interest to develop a new cleaning technology to overcome the disadvantages of wet cleaning technologies such as environmental pollution and the cleaning difficulty of contaminants on integrated circuits. Laser cleaning is a potential technology to remove various pollutants on a wafer surface. However, there is no fundamental data about cleaning efficiencies and cleaning mechanisms of contaminants on a wafer surface using a laser cleaning technology. Therefore, the cleaning characteristics of a wafer surface using an excimer laser were investigated in this study. Fingerprint consisting of inorganic and organic materials was chosen as a representative of pollutants and the effectiveness of a laser irradiation on a wafer cleaning has been investigated qualitatively and quantitatively. The results have shown that cleaning degree is proportional to the laser irradiation time and repetition rate, and quantitative analysis conducted by an image processing method also have shown the same trend. Furthermore, the cleaning efficiency of a wafer contaminated by fingerprint strongly depended on a photothermal cleaning mechanism and the species were removed in order of hydrophilic and hydrophobic contaminants by laser irradiation.

  • PDF

태양전지용 결정질 실리콘 웨이퍼에서의 레일리기준 기반 레이저산란의 광편향 분석에 관한 연구 (Study on Analysis of Optical Deflection of Laser Scattering Based on Rayleigh Criterion for Crystalline Silicon Wafer in Solar Cell)

  • 김경범
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, optical deflection of laser scattering has been investigated based on Rayleigh criterion for crystalline silicon wafer in solar cell. A laser scattering mechanism is newly designed using light scattering properties in silicon wafer. Intensity distributions of laser scattering are different, depending on the incident angle of laser computed from Rayleigh criterion. In case of the incident angle satisfied with the criterion, they are asymmetric. Also, their specular reflection angle is shifted to unpredicted ones. These phenomena are in accordance with previous theories of laser scattering. The optical deflection of laser scattering is experimentally identified with the designed laser scattering mechanism. Its mathematical model is presented from the geometric relationship of laser scattering. It is shown that the optical deflection of laser scattering agree with the presented model, exclusive of grazing angles which is satisfied with Rayleigh criterion.

레이저를 이용한 웨이퍼 다이싱 특성 (Characteristics of Laser Wafer Dicing)

  • 이용현;최경진;유승열
    • 반도체디스플레이기술학회지
    • /
    • 제5권3호
    • /
    • pp.5-10
    • /
    • 2006
  • This paper investigates cutting qualities after laser dicing and predicts the problems that can be generated by laser dicing. And through 3 point bending test, die strength is measured and the die strength after laser dicing is compared with the die strength after mechanical sawing. Laser dicing is chiefly considered as an alternative to overcome the defects of mechanical sawing such as chipping on the surface and crack on the back side. Laser micromachining is based on the thermal ablation and evaporation mechanism. As a result of laser dicing experiments, debris on the surface of wafer is observed. To eliminate the debris and protect the surface, an experiment is done using a water soluble coating material and ultrasonic. The consequence is that most of debris is removed. But there are some residues around the cutting line. Unlike mechanical sawing, chipping on the surface and crack on the back side is not observed. The cross section of cutting line by laser dicing is rough as compared with that by mechanical sawing. But micro crack can not be seen. Micro crack reduces die strength. To measure this, 3 point bending test is done. The die strength after laser dicing decreases to a half of the die strength after mechanical sawing. This means that die cracking during package assembly can occur.

  • PDF

마이크로 광 조형에서 레이저 주사조건에 따른 광 경화성수지의 경화현상 (Photopolymer Solidification Phenomena Considering Laser Exposure Conditions in Micro-stereolithography Technology)

  • 이인환;조동우;이응숙
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.171-179
    • /
    • 2004
  • Micro-stereolithography technology has made it possible to fabricate a freeform 3D microslructure. This technology is based on conventional stereolithography, in which a UV laser beam irradiates the open surface of a UV-curable liquid photopolymer, causing it to solidify. In micro-stereolithography, a laser beam of a few $\mu m$ diameter is used to solidify a very small area of the photopolymer. This is one of the key technological elements, and can be achieved by using a focusing lens. Thus, the solidification phenomena of the liquid photopolymer must be carefully investigated. In this study, the photopolymer solidification phenomena in response to variations in the scanning pitch of a focused laser beam was investigated experimentally. The effect of layer thickness on the solidification width and depth was also examined. These studies were conducted under the conditions of relatively lower laser power and relatively higher scanning speed. Moreover, the photopolymer solidification phenomena for the relatively higher laser power and lower scanning speed was investigated, too. In this case, comparing to the case of lower laser power and higher scanning speed, the photopolymer absorbed large amount of irradiation energy of the laser beam. These results were compared with those obtained from a photopolymer solidification model. From these results, a new laser-scanning scheme was proposed according to the shape of the 3D model. Samples by each method were fabricated successfully.

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.