• Title/Summary/Keyword: Laser Repair

Search Result 87, Processing Time 0.02 seconds

Complete Genome and Calcium Carbonate Precipitation of Alkaliphilic Bacillus sp. AK13 for Self-Healing Concrete

  • Jung, Yoonhee;Kim, Wonjae;Kim, Wook;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.404-416
    • /
    • 2020
  • Bacteria that are resistant to high temperatures and alkaline environments are essential for the biological repair of damaged concrete. Alkaliphilic and halotolerant Bacillus sp. AK13 was isolated from the rhizosphere of Miscanthus sacchariflorus. Unlike other tested Bacillus species, the AK13 strain grows at pH 13 and withstands 11% (w/v) NaCl. Growth of the AK13 strain at elevated pH without urea promoted calcium carbonate (CaCO3) formation. Irregular vaterite-like CaCO3 minerals that were tightly attached to cells were observed using field-emission scanning electron microscopy. Energy-dispersive X-ray spectrometry, confocal laser scanning microscopy, and X-ray diffraction analyses confirmed the presence of CaCO3 around the cell. Isotope ration mass spectrometry analysis confirmed that the majority of CO32- ions in the CaCO3 were produced by cellular respiration rather than being derived from atmospheric carbon dioxide. The minerals produced from calcium acetate-added growth medium formed smaller crystals than those formed in calcium lactate-added medium. Strain AK13 appears to heal cracks on mortar specimens when applied as a pelletized spore powder. Alkaliphilic Bacillus sp. AK13 is a promising candidate for self-healing agents in concrete.

Manufacturing Process of Microcapsules for Autonomic Damage Repair of Polymeric Composites (폴리머 복합재의 자가치료용 마이크로캡슐 제조공정 연구)

  • ;;;;M.R. Kessler;S.R. White
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.32-39
    • /
    • 2002
  • This study focused on the introduction of processing procedure for microcapsules loaded with the healing agent and then microcapsules with the healing agent were manufactured by experiments. The DCPD (dicyclopentadiene) was used for the healing agent and the shell of microcapsules was consisted of urea-formaldehyde resin. The magnitude and the site distribution of microcapsules were measured by a particle size analyzer using laser diffraction technique. Thermal analysis was conducted by using a DSC fur the healing agent, microcapsules without the healing agent, and microcapsules with the healing agent. Also thermal stability was investigated by using a TGA under continuous and isothermal heating conditions far the healing agent, microcapsules without the healing agent, microcapsules with the healing agent. According to the results. microcapsules with the healing agent were verified to be so thermally stable that the healing agent could not evaporate until the shell of microcapsules were burned.

Prosthetic Grafting and Arteriovenous Fistula for the Surgical Management of a Common Femoral Vein Injury Using a Staged Approach

  • Son, Kuk Hui;Lee, So Young;Kang, Jin Mo;Choi, Chang Hu;Park, Kook Yang;Park, Chul Hyun
    • Journal of Chest Surgery
    • /
    • v.50 no.2
    • /
    • pp.133-136
    • /
    • 2017
  • A 27-year-old female patient was referred due to an edematous left lower extremity. Both saphenous veins had been ablated with an endovenous laser procedure used to treat varicose veins. Venography revealed that the left common femoral vein had been divided and that thrombosis was present at the site of division. No veins were available around the thighs. The patient was treated using a staged procedure. During the first stage, a ringed polytetrafluoroethylene graft was used to repair the common femoral vein, and an arteriovenous fistula was constructed from the femoral artery to the graft using a short segment of cephalic vein to increase graft patency. The edema was relieved postoperatively and the graft was patent. During the second stage, which was performed 6 months later, the fistula was occluded by coil embolization. The staged procedure described herein provides an alternative for venous reconstruction when autologous vein is unavailable.

Effects of Amount of Slaking Water on Physical and Chemical Properties of Handmade Hydrated Lime used for Preservation of Architectural Heritage (소화에 사용되는 물의 양이 건축 문화재 보존용 수제 소석회의 물리 및 화학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Hwang, Jong-Kook;Kwon, Yang-Hee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.2
    • /
    • pp.21-28
    • /
    • 2019
  • Handmade hydrated lime has been used for preservation and repair of architectural heritage in Korea. However, the effect of the amount of water used for slaking quicklime on the physical and chemical properties of the hydrated lime, which is the result of the slaking process, has not been clearly understood. In this study, particle size distribution, chemical composition and crystalline phases of the hydrated lime are investigated by varying the amount of water used for the slaking. In addition, temperature history during the slaking process is examined. For this, various experiments, such as laser diffraction analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and temperature recording using a thermocouple, were performed. When the quicklime came into contact with water, its temperature reached $100^{\circ}C$ within 10 min due to sudden exothermic reaction of calcium oxide, and this temperature was maintained for about 30 min. The water to lime ratio influenced the cooling rate during the slaking process; that is, the more water was used, the longer it took to reach an ambient temperature. The amount of water for the slaking did not have a noticeable effect on the contents of major components of the hydrated lime such as calcium hydroxide and calcium carbonate, but when slaked with more amount of water, average particle size of the lime tended to decrease. The experimental results in this study can be used as references for developing guidelines on the safety or appropriate amount of water in the lime slaking process.

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.

Crocetin Induces Cytotoxicity in Colon Cancer Cells Via p53-independent Mechanisms

  • Li, Cai-Yan;Huang, Wen-Feng;Wang, Qun-Li;Wang, Fan;Cai, E.;Hu, Bing;Du, Jia-Cheng;Wang, Jing;Chen, Rong;Cai, Xiao-Jing;Feng, Jing;Li, Hui-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3757-3761
    • /
    • 2012
  • Objective: Crocin has been proposed as a promising candidate for cancer chemoprevention. The purpose of this investigation was to investigate the chemopreventive action and the possible mechanisms of crocin against human colon cancer cells in vitro. Methods: Cell proliferation was examined using MTT assay and the cell cycle distribution fractions were analyzed using fow cytometric analysis after propidium iodide staining. Apoptosis was detected using theTUNEL Apoptosis Detection Kit with laser scanning confocal microscope. DNA damage was assessed using the alkaline single-cell gel electrophoresis assay, while expression levels of p53, cdk2, cyclinA and P21 were examined by Western blot analysis. Results: Treatment of SW480 cells with crocetin (0.2, 0.4, 0.8 mmol/L) for 48 h signifcantly inhibited their proliferation in a concentration-dependent manner. Crocetin (0.8 mmol/L) signifcantly induced cell cycle arrest through p53-independent mechanisms accompanied by P21 induction. Crocetin (0.8 mmol/L) caused cytotoxicity in the SW480 cells by enhancing apoptosis and decreasing DNA repair capacity in a time-dependent manner. Conclusions: This report provides evidence that crocetin is a potential anticancer agent, which may be used as a chemotherapeutic drug.

The Effect of Hair Growth and Distribution by Sophorae Radix, Panax ginseng, Salvia miltiorrhiza BUNGE Water Extracts (고삼, 인삼 및 단삼 혼합물에 의한 모발의 성장과 분포에 미치는 영향)

  • Hwang, Cho-Won;Hwang, Jae-Wan;Kim, Sang-Tae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.3
    • /
    • pp.215-219
    • /
    • 2010
  • In this study, we investigated effects of Monegy (mixture of Sophorae Radix, Panax ginseng, Salvia miltiorrhiza BUNGE) on epilate-induced hair-loss in dorsal region of C57/BL6 mice and external structure of human hair. For morphological and histological analysis in scalp of epilate-induced hair-loss animal model, we utilized several microscopic techniques, such as confocal laser scanning microscopy (CLSM) and LAS 4000. Confocal analysis showed the distribution of FITC-conjugated Monegy and penetration depth compared with normal and control group. Furthermore, when Monegy was topically administrated onto a C57BL6 mouse, it penetrated very well. The fluorescence intensity was increased upto 205 and 113 folds compared to normal and control group, respectively. Also, area of fluorescence was increased to upto 255 to 127 folds compared to normal and control group. Broad scale area of fluorescence in dermis region was observed in the Monegy-treated mice. Furthermore, Monegy induced upto 75% hair repair against depilation. It might be promoted via the induction of growth factors in hair follicle.