• Title/Summary/Keyword: Laser Point Sensor

Search Result 111, Processing Time 0.024 seconds

Development of 3D Measuring System for Artificial Pontic using Spherical Coordinate System Mechanism (구면좌표계식 기구를 이용한 인공치아의 3차원 측정시스템 개발)

  • Maeng, Hee-Young;Sung, Bong-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.427-433
    • /
    • 2010
  • With recent increased demand for reverse engineering in dental machining, the 3D laser scanner is widely used for inspection of artificial pontic. In order to overcome the optical drawback of laser scanner, such as irregular scatter, direction of beam, and the influence of surface integrity, it is developed in this study a new 3D measuring system for artificial pontic using spherical coordinate system mechanism by point laser sensor, which keeps the direction of beam normal to surface consistently. The comprehensive integrated system is established to evaluate the improvement of accuracy with data acquisition system. The experimental results for measuring a master ball and pontic models shows the excellent form accuracy and repeatability compared with conventional apparatus. Also, these results shows the possibility to apply this system for the measuring purpose within 0.05mm accuracy of pontic at the sharp edge or margin contour, which was difficult to measure at the conventional systems.

Inspection of the spot welding using IR sensor (적외선 감지 센서를 이용한 점 용접부의 검사)

  • Lim, Dae-Cheol;Park, In-Tae;Kang, Hyoung-Shik;Gweon, Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.132-140
    • /
    • 1999
  • This paper suggests a monitoring method for the pulsed laser spot welding of the thin metal sheets using a point IR(InfraRed) sensor. A new criterion was introduced and the experimental results guaranteed the efficiency. The ideal radiation feature was derived from the mathematical model and was simulated. The radiation feature is robust to withstand the change of measuring condition and can be used to detect the absorbed laser energy. In an experiment, the radiation feature was examined for the differect laser energy. The pulse width and the laser power was variated and the radiation feature was examined. In the other experiment, the relationship between the weld strength and radiation feature was examined. Artificial Neural Network(ANN) was employed to find out the relationship. The correlation coefficient between the real strength and the estimated strength is high as 0.94 and the mean square error is low as 0.64 kgf learned parts. Another group of the welds was used to appraise the learning efficiency. The correlation coefficient between the measured and the estimated weld strength is high as 0.91.

  • PDF

A Fast Ground Segmentation Method for 3D Point Cloud

  • Chu, Phuong;Cho, Seoungjae;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.491-499
    • /
    • 2017
  • In this study, we proposed a new approach to segment ground and nonground points gained from a 3D laser range sensor. The primary aim of this research was to provide a fast and effective method for ground segmentation. In each frame, we divide the point cloud into small groups. All threshold points and start-ground points in each group are then analyzed. To determine threshold points we depend on three features: gradient, lost threshold points, and abnormalities in the distance between the sensor and a particular threshold point. After a threshold point is determined, a start-ground point is then identified by considering the height difference between two consecutive points. All points from a start-ground point to the next threshold point are ground points. Other points are nonground. This process is then repeated until all points are labelled.

A Study on Automatic Seam Tracking using Vision Sensor (비전센서를 이용한 자동추적장치에 관한 연구)

  • 전진환;조택동;양상민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1105-1109
    • /
    • 1995
  • A CCD-camera, which is structured with vision system, was used to realize automatic seam-tracking system and 3-D information which is needed to generate torch path, was obtained by using laser-slip beam. To extract laser strip and obtain welding-specific point, Adaptive Hough-transformation was used. Although the basic Hough transformation takes too much time to process image on line, it has a tendency to be robust to the noises as like spatter. For that reson, it was complemented with Adaptive Hough transformation to have an on-line processing ability for scanning a welding-specific point. the dead zone,where the sensing of weld line is impossible, is eliminated by rotating the camera with its rotating axis centered at welding torch. The camera angle is controlled so as to get the minimum image data for the sensing of weld line, hence the image processing time is reduced. The fuzzy controller is adapted to control the camera angle.

  • PDF

Design and calibration of a wireless laser-based optical sensor for crack propagation monitoring

  • Man, S.H.;Chang, C.C.;Hassan, M.;Bermak, A.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1543-1567
    • /
    • 2015
  • In this study, a wireless crack sensor is developed for monitoring cracks propagating in two dimensions. This sensor is developed by incorporating a laser-based optical navigation sensor board (ADNS-9500) into a smart wireless platform (Imote2). To measure crack propagation, the Imote2 sends a signal to the ADNS-9500 to collect a sequence of images reflected from the concrete surface. These acquired images can be processed in the ADNS-9500 directly (the navigation mode) or sent to Imote2 for processing (the frame capture mode). The computed crack displacement can then be transmitted wirelessly to a base station. The design and the construction of this sensor are reported herein followed by some calibration tests on one prototype sensor. Test results show that the sensor can provide sub-millimeter accuracy under sinusoidal and step movement. Also, the two modes of operation offer complementary performance as the navigation mode is more accurate in tracking large amplitude and fast crack movement while the frame capture mode is more accurate for small and slow crack movement. These results illustrate the feasibility of developing such a crack sensor as well as point out directions of further research before its actual implementation.

Recognition of Gap between base Plates for Automated Welding of Thick Plates (후판 자동용접을 위한 용접물의 갭 측정)

  • Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF

3D Map Building of The Mobile Robot Using Structured Light

  • Lee, Oon-Kyu;Kim, Min-Young;Cho, Hyung-Suck;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.123.1-123
    • /
    • 2001
  • For Autonomous navigation of the mobile robots, the robots' capability to recognize 3D environment is necessary. In this paper, an on-line 3D map building method for autonomous mobile robots is proposed. To get range data on the environment, we use an sensor system which is composed of a structured light and a CCD camera based on optimal triangulation. The structured laser is projected as a horizontal strip on the scene. The sensor system can rotate $\pm$ $30{\Circ}$ with a goniometer. Scanning the system, we get the laser strip image for the environments and update planes composing the environment by some image processing steps. From the laser strip on the captured image, we find a center point of each column, and make line segments through blobbing these center poings. Then, the planes of the environments are updated. These steps are done on-line in scanning phase. With the proposed method, we can efficiently get a 3D map about the structured environment.

  • PDF

3D Map Building of the Mobile Robot Using Structured Light

  • Lee, Oon-Kyu;Kim, Min-Young;Cho, Hyung-Suck;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.123.5-123
    • /
    • 2001
  • For autonomous navigation of the mobile robots, the robots' capability to recognize 3D environment is necessary. In this paper, an on-line 3D map building method for autonomous mobile robots is proposed. To get range data on the environment, we use a sensor system which is composed of a structured light and a CCD camera based on optimal triangulation. The structured laser is projected as a horizontal strip on the scene. The sensor system can rotate$\pm$30$^{\circ}$ with a goniometer. Scanning the system, we get the laser strip image for the environments and update planes composing the environment by some image processing steps. From the laser strip on the captured image, we find a center point of each column, and make line segments through blobbing these center points. Then, the planes of the environments are updated. These steps are done on-line in scanning phase. With the proposed method, we can efficiently get a 3D map about the structured environment.

  • PDF

The Three Dimensional Modeling Method of Structure in Urban Areas using Airborne Multi-sensor Data (다중센서 데이터를 이용한 구조물의 3차원 모델링)

  • Son, Ho-Woong;Kim, Ki-Young;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.7-19
    • /
    • 2006
  • Laser scanning is a new technology for obtaining Digital Surface Models(DSM) of the earth surface.It is a fast method for sampling the earth surface with high density and high point accuracy. This paper is for buildings extraction from LiDAR points data. The core part of building construction is based on a parameters filter for distinguishing between terrain and non-terrain laser points. The 3D geometrical properties of the building facades are obtained based on plane fitting using least-squares adjustment. The reconstruction part of the procedure is based on the adjacency among the roof facades. Primitive extraction and facade intersections are used for building reconstruction. For overcome the difficulty just reconstruct of laser points data used with digital camera images. Also, 3D buildings of city area reconstructed using digital map. Finally, In this paper show 3D building Modeling using digital map and LiDAR data.

  • PDF

A Study on Real-time Control of Bead Height and Joint Tracking Using Laser Vision Sensor

  • Kim, H. K.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.30-37
    • /
    • 2004
  • There have been continuous efforts on automating welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, a vision system is constructed and using this, the 3 dimensional geometry of the bead is measured on-line. For the application as in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

  • PDF