• 제목/요약/키워드: Laser Plasma

검색결과 574건 처리시간 0.025초

레이저를 이용한 크롬카바이드 플라즈마 용사층의 특성향상 (LASER CONSOLIDATION OF THE PLASMA COATED CHROME CARBIDE LAYER)

  • 안희석;이창희
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.203-212
    • /
    • 1997
  • This paper evaluated the feasibility of laser consolidation for improving the properties of the plasma coated layer, Further, the mechanim of the degradation sequence of the chrome carbide layer applied on the turbine blades was postualted. The laser consolidation could be successfully applied for improcing the surface properties of the plasma coated blade, if a proper condition was carefully chosen. The consolidated layer had erosion & corrosion resistance and vond strength superiro to those of the as-plasma coated layer. The properties of the consolidated layer were strongly dependent upon the degree of dilution, especially on the Fe pickup from the substrate. The degradation of the plasma coating layer was thought to be a reault of the repeating action of the solid particle erosion, corrosion penetration through the pores and oxide films formed along the interlayer surface and impact spalling.

  • PDF

광 센서를 이용한 레이저 가공공정의 모니터링 (Monitoring of Laser Material Processing Using Photodiodes)

  • 박영환
    • 한국산학기술학회논문지
    • /
    • 제10권3호
    • /
    • pp.515-520
    • /
    • 2009
  • 본 논문에서는 알루미늄 레이저 용접에서 발생하는 플라즈마의 빛을 계측하여 용접공정을 모니터링할 수 있는 시스템을 개발하였다. 분광분석을 통해 용접 시 플라즈마의 파장대를 계측하고 이를 근거로 하여 모니터링 시스템에 적합한 포토다이오드를 선정하였다. 이를 다양한 용접 조건에 대하여 적용하였고, 센서 신호의 특성은 플라즈마의 강도와 안정성에 밀접하게 연관되어 있음을 신호의 평균값과 FFT분석을 통하여 알 수 있었다. 이러한 신호 변동의 원인은 플라즈마와 키홀의 거동과 용접 비드의 형상과도 밀접한 관계가 있음을 분석하였다.

Minimization of Welding Defect in $CO_2$ Laser Welded Tube

  • Suh Jeong;Kang Hee-Shin;Lee Jae-Hoon;Park Kyoung-Taik;Lee Moon-Yong;Jung Byung-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.19-23
    • /
    • 2005
  • To minimize the weld defect in manufacturing of the welded tube by using $CO_2$ laser, the monitoring of the welding quality and the seam tracking along the butt-joint lengthwise to the tube axis are studied. The longitudinal butt-joint is shaped from $60kgf/mm^2$ grade steel sheet by 2 roll bending method, and welded by the $CO_2$ laser welding system equipped with the seam tracker and plasma sensor. The laser welded tube has the thickness of 1.5mm, diameter of 105.4mm and length of 2000mm. The precise positioning of the laser beam on the butt-joint to be assembled is obtained within $200{\mu}m$ by the laser vision sensor. The artificial defects in the butt-joint are well observed by the signal of plasma intensity measured from the plasma sensor of UV wavelength range within 400nm. The developed $CO_2$ laser tube welding system has the function of the precision seam tracking and the real-time monitoring of the welding quality. In conclusion, the laser welded tube can be used for manufacturing of automobile chassis and components after hydro-forming.

Topics on Power Photonics for High-Power Solid-state Laser

  • Nakatsuka, Masahiro
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.6-7
    • /
    • 2003
  • The inertial fusion research at ILE, Osaka moves to the fast ignition scheme with using PW laser system to achieve hot core plasma of keV-temperature by heating additionally the dense plasma imploded by the multi-beam Gekko laser system. The solid-state lasers have been developed of the peak-power from TW to PW region with the chirped pulse amplification (CPA) and optical parametric amplification (OPA) technology. (omitted)

  • PDF

$6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 - (The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle -)

  • 김종도;박현준
    • Journal of Welding and Joining
    • /
    • 제24권2호
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.

레이저의 자극 강도가 정상인의 혈장 내 β-endorphin 변화에 미치는 영향 (The Effects of Laser Photobiostimulation on Plasma β-Endorphin Concentration in Human)

  • 김연중;권혁철;김종만
    • 한국전문물리치료학회지
    • /
    • 제6권3호
    • /
    • pp.59-71
    • /
    • 1999
  • The purpose of this study was to determine the effect of varying levels of photobiostimulation treatment dosage on plasma ${\beta}$-endorphin concentration in humans. The subjects of this study were 21 healthy men and women, who were students of the Department of Physical Therapy, College of Health Science, Seonam University. This study was performed from October 26, 1998 to November 5, 1998. All subjects were assigned to one of three groups: a 2.0 $J/cm^2$ laser group, a 4.0 $J/cm^2$ laser group, an 6.0 $J/cm^2$ laser group. He-Ne laser (632.8 nm wave length) and infrared laser (820 nm wave length) of three different energy densities (2.0, 4.0, and 6.0 $J/cm^2$) were applied on the Su-Sam-Ri (L I 10) and Hab-Gog (L I 4) of acupuncture points. Blood samples were taken at pre-treatment, 30 min's post-treatment and 60 min's post-treatment. The level of ${\beta}$ endorphin was measured by radio immuno assay. The data were analyzed by descriptive statistics and repeated measure two-way ANOVA. The results of this study were as follows: 1) The human plasma ${\beta}$-endorphin concentrations were noted to significantly increase due to the energy densities of laser photobiostimulation (p<0.05). 2) The human plasma ${\beta}$-endorphin concentrations were noted to significantly increase during the period after laser photobiostimulation (p<0.05).

  • PDF

나노초 레이저를 이용한 PMMA의 습식 및 건식어블레이션 비교 연구 (Comparison study of nanosecond laser induced wet and dry ablation of PMMA)

  • 이호
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.243-250
    • /
    • 2019
  • The nanosecond laser assisted ablation have been investigated. The biocompatable polymer PMMA was employed as the target material and the two distinctive surface conditions were test. The first surface condition is a dry surface for which the target surface is exposed to air and the second surface condition is the wet surface for which the target surface is covered with dehydrated water. The ablation volume, the laser induced acoustic wave, the laser induced plasma were investigated for both wet and dry condition. The nanosecond laser pulse ablatied more on the wet surface compared to the dry surface. The enhanced ablation of wet surface is attributed to the confined acoustic wave and the laser-induced plasma in the liquid layer.

Optical diffraction gratings embedded in BK-7 glasses by tightly focused femtosecond laser

  • Yoon, Ji Wook;Choi, Won Suk;Kim, Hoon Young;Cho, Sung-Hak
    • 한국레이저가공학회지
    • /
    • 제17권2호
    • /
    • pp.19-25
    • /
    • 2014
  • Optical embedded diffraction gratings with the bulk modification in BK-7 glass plates excited by tightly focused high-intensity femtosecond (130fs) Ti: sapphire laser (peak wavelength = 790nm) were demonstrated. The structural modifications with diameters ranging from 400nm to $4{\mu}m$ were photo-induced after plasma formation occurred upon irradiation with peak intensities of more than $1{\times}1013W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred. The maximum refractive index change was estimated to be $1.5{\times}10^{-2}$. The two optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.

  • PDF

RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P.;ESAREY E.;GEDDES C.G.R.;SCHROEDER C. B.;TOTH CS.
    • Nuclear Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.447-456
    • /
    • 2005
  • Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

Improvement of Proton Beam Quality from the High-intensity Short Pulse Laser Interaction with a Micro-structured Target

  • Seo, Ju-Tae;Yoo, Seung-Hoon;Pae, Ki-Hong;Hahn, Sang-June
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.22-27
    • /
    • 2009
  • Target design study to improve the quality of an accelerated proton beam from the interaction of a high-intensity short pulse laser with an overdense plasma slab has been accomplished by using a two-dimensional, fully electromagnetic and relativistic particle-in-cell (PIC) simulation. The target consists of a thin core part and a thick peripheral part of equivalent plasma densities, while the ratio of the radius of the core part to the laser spot size, and the position of the peripheral part relative to the fixed core part were varied. The positive effects of this core-peripheral target structure could be expected from the knowledge of the typical target normal sheath acceleration (TNSA) mechanism in a laser-plasma interaction, and were apparently evidenced from the comparison with the case of a conventional simple planar target and the case of the transversal size reduction of the simple planar target. Improvements of the beam qualities including the collimation, the forward directionality, and the beam divergence were verified by detailed analysis of relativistic momentum, angular directionality, and the spatial density map of the accelerated protons.