• Title/Summary/Keyword: Laser Doppler Velocimetry (LDV)

Search Result 57, Processing Time 0.018 seconds

An Experimental Study on the Turbulence Structure of Tip Vortices Generated by a Rotor Blade at the Initial Wake Age (회전익 끝와류의 초기 난류 구조에 관한 실험적 연구)

  • Kim, Young Soo;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.661-669
    • /
    • 1999
  • The evolutionary structure of a tip vortex in the initial period have been investigated by the two-dimensional LDV system. Circumferential and axial components of mean velocities, their turbulences and Reynolds stresses were measured by the phase averaging technique at seven different wake ages within one revolution of the rotor. Core growth was also analyzed. It was resulted that circumferential velocity components showed a Rankine combined vortex shape and their circulation profiles viewed in the radial direction were close to the n = 2 model of Vatistas' algebraic formula, while axial velocity components seemed to have the Gaussian profiles In these measured ranges with the base width of three times of core radii. Peaks of circumferential velocities and core radii showed distinct asymmetric behaviors before the wake age of $150^{\circ}$ over inboard and outboard sides of the slipstream, but they became symmetric afterwards. Turbulence profiles which had two peaks Inside the core radii in the earlier wake age were also changed to single peaks after $150^{\circ}$. These trends imply that the tip vortex was barely mature at this wake age.

A Study On the Radiation Corrections Applied to Thermocouple Measurements in Non-premixed Counterflow Flames (비예혼합 역류화염에서 열전대 측정을 적용하기 위한 복사보정에 관한 연구)

  • 오율권;허준영;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2002
  • The temperature field of a counterflow non-premixed flame is investigated using thermocouples of two sizes. A thermal balance is performed on the thermocouple in order to calculate the magnitude of the radiation corrections involved. Both the thermocouple wire and bead are separately considered to be the relevant thermal surface to which convective heat transfer takes place, and from which radiation lasses occur. The flame is also simulated by using a detailed chemical kinetic mechanism in a previously developed computer code. The local thermo-physical properties of the gas mixture, required to calculate the corrections, are determined both from the simulation, and by approximating the properties of the mixture as those of molecular nitrogen at the measured temperatures. It is concluded that the thermocouple wire is the appropriate thermal surface to which radiation corrections apply, in the absence of information about the gas mixture, its properties can be reasonably approximated by those of nitrogen rm ($N_2$), and the radiation corrections are very sensitive to misalignments in the temperature and velocity fields.

A Study on Flow Induced Vibration of Cantilever Plate with Angle of Attack (받음각을 갖는 평판보의 유동 여기진동에 관한 연구)

  • 이기백;손창민;김봉환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1919-1932
    • /
    • 1991
  • Experimental studies are conducted to investigate the Flow-Induced Vibration mechanism for cantilever plate model with the angle of attack (.alpha.=10.deg., 20.deg., 30.deg.). Research is divided into two parts. First, the flow fields around two dimensional flat plate model are investigated using LDV system. Second, the vortex shedding frequency and response spectra of cantilever plate are obtained experimentally using gap sensor and hot wire anemometer. Finite element method program was used in order to predict the flow field and pressure field around thin flat plate. And some predicted results were compared with the experimental data. The aspect ration of test model is d/t=25 (d; width, t; thickness). From the measurement of the flow field it was found that in the case of small inclined (.alpha.=10.deg., 20.deg.) relatively, the separated boundary layer at sharp leading edge developed smoothly downstream. With increasing the angle of attack of the plate, stagnation region was appeared on the back side of the plate and separated boundary layer was extended downstream. These trends are a good agreement with the computational results. It was found by analysis of response spectra of cantilever plate that the influences of vortex shedding frequency were important at the large of attack (.alpha.=30.deg.), and two peak values appear in entire test model at 24Hz, 150Hz.

레이져 응용 계측에 관하여

  • 신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.14-19
    • /
    • 1984
  • 종래에 많이 사용된 각양의 계측 방법을 일일이 설명하는 것은 본 해설의 목적이 아니기 때문에 개략적으로 분류하여 설명하면 다음과 같다. 1) 시간 평균유속은 주로 프로브(probe)를 경유하여 동압과 정압의 측정에 의하여 수행되어 왔다. 연소반응이 있으면 밀도의 변화가 있게 되는데 밀도는 후술하는 농도의 계측과 온도의 계측에 의하여 정해져 동압과 정압으로부터 유속으로 변환된다. 시간분해능이 높은 비접촉식(직접 프 로브를 측정부에 삽입하지 않는 방법) 유속측정이 가능한 방법으로는 레이저 도플러 유속계 (Laser Doppler Velocimetry, 이하 LDV로 표현)를 들 수 있다. LDV는 압력측정에 의한 유속 산출법에서와 같은 온도 및 농도 등의 부수적인 계측이 필요없이, 직접 유속을 검출할 수 있으며 또한 검정이 필요없는 절대유속 측정이 가능하며 현재 연소반응이 있는 흐름에 대한 대부분의 연구에 적용되고 있는 실정이다. 2) 시간평균 화학종 농도측정에 가장 많이 쓰이는 방법은, 연소가스를 채취하여 가스 크로마토 그라프(Gas Chromatograph)로 분석하는 것을 들 수 있다. 한편, 시간 분해능이 높은 화학종 농 도의 계측은 레이저를 사용하여 각 화학종의 발광, 산란 및 흡수성을 이용, 측정한다. 3) 온도측정은 대부분 열전대를 사용하고 있다. 그러나 이 방법은 직접 프로브를 삽입해야 하므로 사용한계의 범위가 지극히 좁으며, 연소반응이 일어나므로 프로브 자체의 촉매반응 및 복사 열전달에 의한 보정 등이 사용상 큰 문제로 제기된다. 그러나 최근 레이저 이용기술의 발달로 (2)항에서의 농도 계측과 같이 반응기체의 온도 및 성분의 동시측정이 가능한 방법도 점차 현 실화 되어가고 있다. 그 대표적인 예로 CARS법(Coherent Anti-Stokes Raman Spectroscopy)을 들 수 있다. 이상으로부터 연소반응이 일어나는 흐름에서의 각종 계측에서는, 비접촉 측정의 가능성과 시간 공간 분해능의 특징으로 미루어 앞으로는 레이저를 이용한 계측 방법이 그 주류를 이룰 것으로 사료된다. 우선 본 해설은 기체의 온도 및 농도의 광학적 측정방법중 Raman산란광 검출법에 대하여 실제로 측정하는 입장에서 간단히 소개한다.

  • PDF

Effect of Injection Rate and Gas Density on Ambient Gas Entrainment of Non-evaporating Transient Diesel Spray from Common-Rail Injection System (커먼레일시스템의 비증발 디젤 분무에서 분사율과 주변기체의 밀도에 따른 주변기체 유입)

  • Kong, Jang-Sik;Choi, Wook;Bae, Choong-Sik;Kang, Jin-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.19-24
    • /
    • 2004
  • Entrainment of ambient gas into a transient diesel spray is a crucial factor affecting the following preparation of combustible mixture. In this study, the entrainment characteristics of ambient gas for a non-evaporating transient diesel were investigated using a common-rail injection system. The effects of ambient gas density and nozzle hole geometry were assessed with entrainment coefficient. Laser Doppler Velocimetry (LDV) technique was introduced to measure the entrainment speed of ambient gas into a spray. There appeared a region where the entrainment coefficients remained almost constant while injection rates were still changing. The effect of common-rail pressure, which altered the slope of injection rate curve, was hardly noticed at this region. Entrainment coefficient increased with ambient gas density, that is, the effect of ambient gas density was greater than that of turbulent jet whose entrainment coefficient remained constant. The non-dimensional distance was defined to reflect the effect of nozzle hole diameter and ambient gas density together. The mean value of entrainment coefficient was found to increase with non-dimensional distance from the nozzle tip, which would be suggested as the guideline for the nozzle design.

A study on flow characteristics of laminar oscillatory flows in a square-sectional $180^{\circ}C$ curved duct (정사각단면 $180^{\circ}C$ 곡덕트에서 층류진동유동의 유동 특성에 관한 연구)

  • Park, Gil-Mun;Jo, Byeong-Gi;Bong, Tae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.139-152
    • /
    • 1998
  • In the present study, the flow characteristics of developing laminar oscillatory flows in a square -sectional 180 deg. curved duct are investigated experimentally. The experimental study using air in a square-sectional 180 deg. curved duct is carried out to measure velocity distributions with a data acquisition and LDV (Laser Doppler Velocimetry) processing system. In this system, Rotating Machinery Resolver (RMR) and PHASE program are used to obtain the results of unsteady flows. The major flow characteristics of developing oscillatory flows are found by analyzing velocity curves, mean velocity profiles, time-averaged velocity distribution of secondary flow, wall shear stress distributions, and entrance lengths. In a lower dimensionless angular frequency, the axial velocity distribution of laminar oscillatory flow in a curved duct shows a convex shape in a central part and axial symmetry. The maximum value of wall shear stress in a lower dimensionless angular frequency is located in an outside wall, but according to increasing the dimensionless angular frequency, the maximum of wall shear stress is moved to inner wall. The entrance lengths of laminar oscillatory flows in a square-sectional 180 deg. curved duct is obtained to 90 deg. of bended angle of duct in this experimental conditions.

A Study on Turbulence Stimulation Effect of Studs for Boundary Layer Over a Flat Plate (평판 경계층에 대한 스터드의 난류촉진 영향 연구)

  • Lee, Joon-Hyoung;Jeong, So-Won;Hwang, Seunghyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.18-28
    • /
    • 2022
  • The turbulence stimulation effect of studs for boundary layer over a flat plate was investigated through the flow measurement in KRISO cavitation tunnel. For the test, Laser Doppler Velocimetry (LDV) and three flat plate models were used: (1) flat plate without studs; (2) flat plate with one stud row; (3) flat plate with two stud rows. The dimension and location of stud rows and the inflow speed were selected considering test conditions for standard-sized model ships in KRISO towing tank. The boundary layer characteristics of test models were analyzed and compared in terms of mean velocity profiles, turbulence intensity profiles, boundary layer thickness, and shape factor. In the case of the flat plate without studs, transition from laminar to turbulent flow occurred around Rex=3.83 ~ 5.19 × 105. In the case of flat plates with stud rows, the flow rapidly changed into turbulent flow right after passing the first stud row. In the state where turbulence was already developed, the second stud row slightly increased the turbulence intensity near the top of the stud, but did not significantly affect the boundary layer characteristics such as mean velocity distribution, boundary layer thickness, and shape factor.